Nanopattern transformation of ABC triblock copolymer thin films induced by strong solvent selectivity and annealing

Hailiang Huang , Xihong Zu , Guobin Yi , Benbin Zhong , Hongsheng Luo

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 684 -688.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (4) : 684 -688. DOI: 10.1007/s40242-017-6381-x
Article

Nanopattern transformation of ABC triblock copolymer thin films induced by strong solvent selectivity and annealing

Author information +
History +
PDF

Abstract

Nanopattern transformation behaviors of polyisoprene-block-polystyrene-block-poly(2-vinylpyridine) (PI-b-PS-b-P2VP) asymmetric ABC triblock copolymer were investigated systematically with various control parameters, including different solvents for polymer solution and annealing conditions in this paper. Ordered nanopattern of PI-b-PS-b-P2VP with hexagonal cylinders could be obtained when PI-b-PS-b-P2VP toluene solution was spin-coated on silicon substrate followed by toluene vapor annealing process. When the film with hexagonal and cylindrical nanopattern was exposed to saturated toluene vapor, the order-order transition of cylindrical nanopattern to parallel nanopattern was observed due to the strong selectivity of toluene to PS and PI blocks. Furthermore, fingerprint nanopattern could also be obtained by solvent annealing in tetrahydrofuran vapor. The nanopattern transformation was due to different selectivity of solvents and incompatibilities of the three blocks of PI-b-PS-b-P2VP under various solvent annealing conditions.

Keywords

Triblock copolymer / Nanopattern / Self-assembly / Solvent vapor annealing

Cite this article

Download citation ▾
Hailiang Huang, Xihong Zu, Guobin Yi, Benbin Zhong, Hongsheng Luo. Nanopattern transformation of ABC triblock copolymer thin films induced by strong solvent selectivity and annealing. Chemical Research in Chinese Universities, 2017, 33(4): 684-688 DOI:10.1007/s40242-017-6381-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Qiao Y. L., Ferebee R., Lee B., Mitra I., Lynd N. A., Hayat J., Stein G. E., Bockstaller M. R., Tang C. B. Macromolecules, 2014, 47(18): 6373.

[2]

Roland S., Miquelard-Garnier G., Gervais M., Guinault A., Sollo-goub C. Materials Today Communications, 2016, 6: 37.

[3]

Arora H., Du P., Tan K. W., Hyun J. K., Grazul J., Xin H. L., Muller D. A., Thompson M. O., Wiesner U. Science, 2010, 330(6001): 214.

[4]

Xu J. P., Wang K., Li J. Y., Zhou H. M., Xie X. L., Zhu J. T. Macro-molecules, 2015, 48(8): 2628.

[5]

Deng R. H., Liang F. X., Li W. K., Liu S. Q., Liang R. J., Cai M. L., Yang Z. Z., Zhu J. T. Small, 2013, 9: 4099.

[6]

Shrestha N., Araújo F., Shahbazi M. A., Mäkilä E., Gomes M. J., Herranz-Blanco B., Lindgren R., Granroth S., Kukk E., Salonen J., Hirvonen J., Sarmento B., Santos H. A. Adv. Funct. Mater., 2016, 26(20): 3405.

[7]

Liu R., Wang Y., Ma Y. D., Wu Y., Guo Y., Xu L. Chem. Res. Chi-nese Universities, 2016, 32(5): 848.

[8]

Zhang S. B., Qian X., Zhang D. H., Zhu J. M., Wu Y., Guo Y., Xu L. Chem. Res. Chinese Universities, 2016, 32(1): 149.

[9]

Wijayasekara D. B., Cowan M. G., Lewis J. T., Gin D. L., Noble R. D., Bailey T. S. J. Membrane. Sci., 2016, 511: 170.

[10]

Langowska K., Palivan C. G., Meier W. Chem. Commun., 2013, 49(2): 128.

[11]

Onaca O., Hughes D. W., Balasubramanian V., Grzelakowski M., Meier W., Palivan C. G. Macromol. Biosci., 2010, 10(5): 531.

[12]

Braghirolia F. L., Fierro V., Parmentierb J., Pascc A., Celzard A. Green. Chem., 2016, 18(11): 3265.

[13]

Bang J., Jeong U., Ryu D. Y., Russell T. P., Hawker C. J. Adv. Mater., 2009, 21(47): 4769.

[14]

Gu X. D., Gunkel I., Hexemer A., Gu W. Y., Russell T. P. Adv. Mater., 2014, 26(2): 273.

[15]

Gu W. Y., Xu J., Kim J. K., Hong S. W., Wei X. Y., Yang X. M., Lee K. Y., Kuo D. S., Xiao S. G., Russell T. P. Adv. Mater., 2013, 25(27): 3677.

[16]

Islam M. T., Khan M., Shin T., Park S. Y. Polymer, 2015, 66: 94.

[17]

Luo C. X., Huang W. H., Han Y. C. Macromol. Rapid. Comm., 2009, 30(7): 515.

[18]

Yu X. H., Luo C. X., Zhao Q. Q., Yang H., Han Y. C. J. Polym. Sci. Pol. Phys., 2014, 52(15): 1030.

[19]

Luo C. X., Huang W. H., Han Y. C. Macromol. Rapid. Comm., 2009, 30(22): 1917.

[20]

Ershkov S. V. Appl. Math. Comput., 2016, 276: 379.

[21]

Ghelichi M., Qazvin N.T. Soft Matter, 2016, 12(20): 4611.

[22]

Li Y., Wang D. Q., Wang W., Li Y. C., Huang X. R., Sun C. C., Jin M. X. Chem. Res. Chinese Universities, 2014, 30(1): 144.

[23]

Wu S. G., Du T. T. Chem. Res. Chinese Universities, 2013, 29(1): 171.

[24]

Kitazawa Y., Ueki T., McIntosh L. D., Tamura S., Niitsuma K., Im-aizumi S., Lodge T. P., Watanabe M. Macromolecules, 2016, 49(4): 1414.

[25]

Yan N., Zhu Y. T., Jiang W. Soft Matter, 2016, 12(3): 965.

[26]

Asai Y., Takano A., Matsushita Y. Macromolecules, 2015, 48(5): 1538.

[27]

Asai Y., Yamada K., Yamada M., Takano A., Matsushita Y. ACS Macro. Lett., 2014, 3(2): 166.

[28]

Zu X. H., Gong J., Tu W. P., Deng Y. L. Macromol. Rapid. Comm., 2011, 32(19): 1526.

[29]

Zu X. H., Tu W. P., Deng Y. L. J. Nanopart. Res., 2011, 13(1): 1.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/