Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface

Li Liu , Maohai Lin , Zhongbo Liu , Honggang Sun , Xian Zhao

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 255 -260.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 255 -260. DOI: 10.1007/s40242-017-6378-5
Article

Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface

Author information +
History +
PDF

Abstract

Understanding the interaction of WO3 with CO2 and H2O is vital for clarifying its role in the photocatalytic reduction of CO2. In this study, we employed density functional theory to investigate the interaction of CO2 and H2O with both perfect and defective monoclinic WO3(001) surfaces. The interactions of co-adsorbed CO2 and H2O were also studied. The major finding is that the presence of oxygen vacancies and co-adsorbed CO2 or H2O can significantly increase the stability of CO2 and H2O on the WO3(001) surface. A defective WO3(001) surface is more capable of adsorbing a single CO2 or H2O molecule than a perfect WO3(001) surface, and H2O adsorbed onto a defective WO3(001) surface spontaneously dissociates into a hydrogen atom and a hydroxy group. The presence of co-adsorbed H2O can increase the stability of CO2 on the WO3(001) surface, while the presence of the co-adsorbed CO2 can increase the stability of H2O on WO3(001) surface. The analysis of the bonding mechanisms shows that the charge redistribution between the adsorbate and the WO3(001) surface containing oxygen vacancies and co-adsorbed CO2 or H2O is stronger than that between the adsorbate and the perfect WO3(001) surface; thus, adsorption energy is higher in the former case. The results will be useful for designing WO3 photocatalysts, as well as for an atomistic-level understanding of the photocatalytic reduction of CO2.

Keywords

Density functional theory / Carbon dioxide / Water / Adsorption / Tungsten trioxide / Photocatalysis

Cite this article

Download citation ▾
Li Liu, Maohai Lin, Zhongbo Liu, Honggang Sun, Xian Zhao. Density functional theory study of CO2 and H2O adsorption on a monoclinic WO3(001) surface. Chemical Research in Chinese Universities, 2017, 33(2): 255-260 DOI:10.1007/s40242-017-6378-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cox P. M., Betts R. A., Jones C. D., Spall S. A. Nature, 2000, 408(6809): 184.

[2]

Houghton J. Rep. Prog. Phys., 2005, 68(6): 1343.

[3]

Karl T. R., Trenberth K. E. Science, 2003, 302(5651): 1719.

[4]

Tahir M., Amin N. S. Energ. Convers. Manage., 2013, 76: 194.

[5]

Navalon S., Dhakshinamoorthy A., Alvaro M., Garcia H. Chemsus-chem, 2013, 6(4): 562.

[6]

Habisreutinger S. N., Schmidt-Mende L., Stolarczyk J. K. Angew. Chem. Int. Edit., 2013, 52(29): 7372.

[7]

Zheng Y., Pan Z., Wang X. Chin. J. Catal., 2013, 34(3): 524.

[8]

Hong J., Zhang W., Ren J., Xu R. Anal. Methods, 2013, 5(5): 1086.

[9]

Mao J., Li K., Peng T. Catal. Sci. Technol., 2013, 3(10): 2481.

[10]

Kukkola J., Maklin J., Halonen N., Kyllonen T., Toth G., Szabo M., Shchukarev A., Mikkola J. P., Jantunen H., Kordas K. Sensor Actuat. B: Chem., 2011, 153(2): 293.

[11]

Vemuri R. S., Bharathi K. K., Gullapalli S. K., Ramana C. V. ACS Appl. Mater. Inter., 2010, 2(9): 2623.

[12]

Vemuri R. S., Engelhard M. H., Ramana C. V. ACS Appl. Mater. In-ter., 2012, 4(3): 1371.

[13]

Amano F., Ishinaga E., Yamakata A. J. Phys. Chem. C, 2013, 117(44): 22584.

[14]

Chen X., Zhou Y., Liu Q., Li Z., Liu J., Zou Z. ACS Appl. Mater. In-ter., 2012, 4(7): 3372.

[15]

Xie Y. P., Liu G., Yin L., Cheng H. M. J. Mater. Chem., 2012, 22(14): 6746.

[16]

Campbell C. T., Peden C. H. F. Science, 2005, 309(5735): 713.

[17]

Lee J., Sorescu D. C., Deng X. J. Am. Chem. Soc., 2011, 133(26): 10066.

[18]

Indrakanti V. P., Kubicki J. D., Schobert H. H. Fuel Process. Tech-nol., 2011, 92(4): 805.

[19]

He H., Zapol P., Curtiss L. A. J. Phys. Chem. C, 2010, 114(49): 21474.

[20]

Pipornpong W., Wanbayor R., Ruangpornvisuti V. Appl. Surf. Sci., 2011, 257(24): 10322.

[21]

Oliver P. M., Parker S. C., Egdell R. G., Jones F. H. J. Chem. Soc., Faraday Trans., 1996, 92: 2049.

[22]

Lambert-Mauriat C., Oison V., Saadi L., Aguir K. Surf. Sci., 2012, 606: 40.

[23]

Jones F. H., Rawlings K., Foord J. S., Cox P. A., Egdell R. G., Pethi-ca J. B., Wanklyn B. M. R. Phys. Rev. B, 1995, 52: R14392.

[24]

Gholizadeh R., Yu Y. X. Appl. Surf. Sci., 2015, 357: 1187.

[25]

Wu D. L., Jiang W., Liu X. Q., Qiu N. X., Xue Y. Chem. Res. Chi-nese Universities, 2016, 32(1): 118.

[26]

Zhang H., Zhang H. M., Wang L. J., Shen J. Y. Chem. J. Chinese Universities, 2016, 37(9): 1660.

[27]

Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D. Rev. Mod. Phys., 1992, 64: 1045.

[28]

Ceperley D. M., Alder B. J. Phys. Rev. Lett., 1980, 45(7): 566.

[29]

Perdew J. P., Zunger A. Phys. Rev. B, 1981, 23: 5048.

[30]

Segall M., Lindan P., Probert M., Pickard C., Hasnip P., Clark S., Payne M. J. Phys. Condens. Matter., 2002, 14: 2717.

[31]

Vanderbilt D. Phys. Rev. B, 1990, 41: 7892.

[32]

Monkhorst H. J., Pack J. D. Phys. Rev. B, 1976, 13(12): 5188.

[33]

Hahn K. R., Iannuzzi M., Seitsonen A. P., Hutter J. J. Phys. Chem. C, 2013, 117(4): 1701.

[34]

Zhao Z., Li Z., Zou Z. J. Phys. Chem. C, 2012, 116(13): 7430.

[35]

Loopstra B. O., Rietveld H. M. Acta Cryst., 1969, B25: 1420.

[36]

Levy M., Pagnier T. Sensor. Actuat. B, 2007, 126: 204.

[37]

Sun X. L., Huo R. P., Bu Y. X., Li J. L. Chem. J. Chinese Universi-ties, 2015, 36(8): 1570.

[38]

Yu Y. X. ACS Appl. Mater. Inter., 2014, 6: 16267.

[39]

Yu Y. X. J. Mater. Chem. A, 2014, 2: 8910.

[40]

Gao H. W., Pishney S., Janik M. J. Surf. Sci., 2013, 609: 140.

AI Summary AI Mindmap
PDF

87

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/