Unexpected decarboxamidation of α-arylsulfonyl Weinreb amides by Grignard reagents: Synthesis of α-disubstituted arylsulfones

Wei Liu , Houying Li , Haijuan Qin , Wei Zhao , Chen Zhou , Shengping Jiang , Cheng Yang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 213 -220.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 213 -220. DOI: 10.1007/s40242-017-6371-z
Article

Unexpected decarboxamidation of α-arylsulfonyl Weinreb amides by Grignard reagents: Synthesis of α-disubstituted arylsulfones

Author information +
History +
PDF

Abstract

An unexpected decarboxamidation of α-arylsulfonyl Weinreb amides as a side reaction under the standard acylating conditions was found in Weinreb amides chemistry. The control experiments for mechanism study disclosed that α-sulfo group was necessary, and α-quaternary carbon was the key factor for the reaction. Meanwhile, an efficient method was established for the preparation of secondary alkyl arylsulfones by this unexpected C―C bond cleavage reaction using excess Grignard reagent.

Keywords

Weinreb amide / Sulfone / Grignard reagent / C―C bond cleavage / Decarboxamidation

Cite this article

Download citation ▾
Wei Liu, Houying Li, Haijuan Qin, Wei Zhao, Chen Zhou, Shengping Jiang, Cheng Yang. Unexpected decarboxamidation of α-arylsulfonyl Weinreb amides by Grignard reagents: Synthesis of α-disubstituted arylsulfones. Chemical Research in Chinese Universities, 2017, 33(2): 213-220 DOI:10.1007/s40242-017-6371-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lardi E. A., Vitaku E., Njardarson J. T. J. Med. Chem., 2014, 57: 2832.

[2]

Hofmann A., Hanemann T. J. Power Sources, 2015, 298: 322.

[3]

Ji J. W., Wu D., Cao Z. Q., Deng L. H., Yun Y. B. J. Sol-Gel Sci. Techn., 2015, 76: 446.

[4]

Xu W. M., Han F. F., He M., Hu D. Y., He J., Yang S., Song B. A. J. Agric. Food Chem., 2012, 60: 1036.

[5]

Ye J., Chen Z., Fung M. K., Zheng C. J., Ou X. M., Zhang X. H., Yuan Y., Lee C. S. Chem. Mater., 2013, 25: 2630.

[6]

Yi Z., Liu C. J., Zhu L. P., Xu Y. Y. Langmuir, 2015, 31: 7970.

[7]

Gao N. A., Zhang S. B. J. Appl. Polym. Sci., 2013, 128: 1.

[8]

Lee S., Ann J., Lee H., Kim J. H., Kim C. S., Yang T. H., Bae B. J. Mater. Chem. A, 2015, 3: 1833.

[9]

Lai M. J., Lee H. Y., Chuang H. Y., Chang L. H., Tsai A. C., Chen M. C., Huang H. L., Wu Y. W., Teng C. M., Pan S. L., Liu Y. M., Mehndiratta S., Liou J. P. J. Med. Chem., 2015, 58: 6549.

[10]

Margraf N., Manolikakes G. J. Org. Chem., 2015, 80: 2582.

[11]

Pandya V. G., Mhaske S. B. Org. Lett., 2014, 16: 3836.

[12]

Pfund E., Lequeux T., Gueyrard D. Synthesis, 2015, 47: 1534.

[13]

Chatterjee B., Bera S., Mondal D. Tetrahedron-asymmetry, 2014, 25: 1.

[14]

Ma J. H., Wang F., Wang J. X., You Q. D. Chinese J. Org. Chem., 2010, 30: 1615.

[15]

Soderman S. C., Schwan A. L. J. Org. Chem., 2012, 77: 10978.

[16]

Oh S., Jeong I. H., Lee S. J. Org. Chem., 2004, 69: 984.

[17]

Griffin F. K., Paterson D. E., Murphy P. V., Taylor R. J. K. Eur. J. Org. Chem., 2002, 7: 1305.

[18]

Markitanov Y. M., Timoshenko V. M., Shermolovich Y. G. J. Sulfur Chem., 2014, 35: 188.

[19]

Nielsen M., Jacobsen C. B., Holub N., Paixao M. W., Jorgensen K. A. Angew. Chem. Int. Ed., 2010, 49: 2668.

[20]

Alba A. N. R., Companyo X., Rios R. Chem. Soc. Rev., 2010, 39: 2018.

[21]

Jera C. N., Yus M. Tetrahedron, 1999, 55: 10547.

[22]

Hastings J. C., Selnick H., Wolanski B., Tomassini J. E. Antimicrob. Agents Chemother., 1996, 40: 1304.

[23]

Balasubramaniam S., Aidhen I. S. Synthesis, 2008, 23: 3707.

[24]

Davies S. G., Fletcher A. M., Thomson J. E. Chem. Commun., 2013, 49: 8586.

[25]

Zhao W., Liu W. Chinese J. Org. Chem., 2015, 35: 55.

[26]

Graham S. L., Scholz T. H. Tetrahedron Lett., 1990, 31: 6269.

[27]

Labeeuw O., Phansavath P., Genet J. P. Tetrahedron Lett., 2004, 45: 7107.

[28]

Hirner S., Panknin O., Edefuhr M., Somfai P. Angew. Chem. Int. Ed., 2008, 47: 1907.

[29]

Hirner S., Somfai P. J. Org. Chem., 2009, 74: 7798.

[30]

Paleo M. R., Calaza M. I., Grana P., Sardina F. J. Org. Lett., 2004, 6: 1061.

[31]

Fukuzawa H., Ura Y., Kataoka Y. J. J. Organomet. Chem., 2011, 696: 3643.

[32]

Cutulic S. P. Y., Murphy J. A., Farwaha H., Zhou S. Z., Chrystal E. Synlett., 2008, 14: 2132.

[33]

Sword R., O’Sullivan S., Murphy J. A. Aust. J. Chem., 2013, 66: 314.

[34]

Wieckowska A., Fransson R., Odell L. R., Larhed M. J. Org. Chem., 2011, 76: 978.

[35]

Zhao M. M., Li W. F., Ma X., Fan W. Z., Tao X. M., Li X. M., Xie X. M., Zhang Z. G. Sci. China Chem., 2013, 56: 342.

[36]

Alonso D. A., Fuensanta M., Gomez-Bengoa E., Najera C. Adv. Synth. Catal., 2008, 350: 1823.

[37]

Ghosh A. K., Banerjee S., Sinha S., Kang S. B., Zajc B. J. Org. Chem., 2009, 74: 3689.

[38]

Mukkamala R., Senthilmurugan A., Aidhen I. S. Eur. J. Org. Chem., 2013, 11: 2216.

[39]

Harikrishna K., Mukkamala R., Hinkelmann B., Sasse F., Aidhen I. S. Eur. J. Org. Chem., 2014, 5: 1066.

[40]

Chowdhury M., Mandal S. K., Banerjee S., Zajc B. Molecules, 2014, 19: 4418.

[41]

Satyamurthi N., Singh J., Aidhen I. S. Synthesis, 2000, 3: 375.

[42]

Cao L. D., Weidner K., Renaud P. Adv. Synth. Catal., 2011, 353: 3467.

[43]

Kong H. I., Gill M. A., Hrdina A. H., Crichton J. E., Manthorpe J. M. J. Fluor. Chem., 2013, 153: 151.

[44]

Weaver J. D., Tunge J. A. Org. Lett., 2008, 10: 4657.

[45]

Weaver J. D., Ka B. J., Morris D. K., Thompson W., Tunge J. A. J. Am. Chem. Soc., 2010, 132: 12179.

[46]

Larnaud F., Pfund E., Linclau B., Lequeux T. J. Fluor. Chem., 2012, 134: 128.

[47]

Larnaud F., Malassis J., Pfund E., Linclau B., Lequeux T. Org. Lett., 2013, 15: 2450.

[48]

Jia Z., Gvlvez E., Sebastian R. M., Pleixats R., Alvarez-Larena A., Martin E., Vallribera A., Shafir A. Angew. Chem. Int. Ed., 2014, 53: 11298.

[49]

Yamagata K., Okabe F., Maruoka H., Tagawa Y. J. Heterocyclic Chem., 2005, 42: 955.

AI Summary AI Mindmap
PDF

121

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/