Assembly of five coordination polymers based on 5,11,17,23-tetra-tert-butyl-25-(carboxymethoxy)-calix[4]arene ligand

Yuanchun He , Jiao Guo , Na Xu , Yang Yu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 44 -48.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 44 -48. DOI: 10.1007/s40242-017-6366-9
Article

Assembly of five coordination polymers based on 5,11,17,23-tetra-tert-butyl-25-(carboxymethoxy)-calix[4]arene ligand

Author information +
History +
PDF

Abstract

Five coordination polymers, [Co(H3L)2(dib)]·1.5H2O(1), [Cu(H3L)2(dib)](2), [Co(H3L)(mtpy)]·DMF(3), [Ni(H3L)2(mtpy)(H2O)]·3DMF·H2O(4), and [Cd(H3L)2(pybim)]·1.5H2O(5), have been successfully prepared from 5,11,17,23-tetra-tert-butyl-25-(carboxymethoxy)calix[4]arene, metal salts, and N-donor auxiliary ligands under hydrothermal conditions[dib=1,4-di(1H-imidazol-1-yl)butane, pybim=2-(2'-pyridyl)benzimidazole, and mtpy=4'-(4- methylphenyl)-2,2':6',2''-terpyridine]. Structural analysis suggests that the metal ion first joins two organic carboxy-late ligands to form the independent units, which are further extended by the N-donor auxiliary ligand to give the final structure. Compounds 1 and 2 display 1D infinite chains bridged by a flexible bidentate dib ligand. Compounds 35, with multidentate chelate ligands, reveal discrete 0D units. Furthermore, in compounds 3 and 5, 1D supramolecular architectures are exhibited due to π-π interactions.

Keywords

Calix[4]arene / Crystal structure / Auxiliary ligand

Cite this article

Download citation ▾
Yuanchun He, Jiao Guo, Na Xu, Yang Yu. Assembly of five coordination polymers based on 5,11,17,23-tetra-tert-butyl-25-(carboxymethoxy)-calix[4]arene ligand. Chemical Research in Chinese Universities, 2017, 33(1): 44-48 DOI:10.1007/s40242-017-6366-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Wang L., Han Y., Feng X., Zhou J., Qi P., Wang B. Coord. Chem. Rev., 2016, 307: 361.

[2]

Yang J., Ma J. F., Batten S. R. Chem. Commun., 2012, 48(64): 7899.

[3]

Xiao D. J., Gonzalez M. I., Darago L. E., Vogiatzis K. D., Haldoupis E., Gagliardi L., Long J. R. J. Am. Chem. Soc., 2016, 138(22): 7161.

[4]

Deenadayalan M. S., Sharma N., Verma P. K., Nagaraja C. M. Inorg. Chem., 2016, 55(11): 5320.

[5]

Lu L., Mu B., Li N., Huang R. Chem. Res. Chinese Universities, 2015, 31(5): 712.

[6]

Zheng T., Han Y., Liu N. Chem. Res. Chinese Universities, 2016, 32(2): 184.

[7]

Liu L., Zhang X. N., Han Z. B., Gao M. L., Cao X. M., Wang S. M. J. Mater. Chem. A, 2015, 3(27): 14157.

[8]

Du M., Li C. P., Liu C. S., Fang S. M. Coord. Chem. Rev., 2013, 257: 1282.

[9]

Zhang J., Liu Y., Gong L., Zhang C. Polyhedron, 2016, 107: 68.

[10]

Xue L. P., Chang X. H., Li S. H., Ma L. F., Wang L. Y. Dalton Trans., 2014, 43(19): 7219.

[11]

Rosa I. M. L., Costa M. C. S., Vitto B. S., Amorim L., Correa C. C., Pinheiro C. B., Doriguetto A. C. Cryst. Growth Des., 2016, 16(3): 1606.

[12]

Li Q. Q., Zhang W. Q., Ren C. Y., Fan Y. P., Li J. L., Liu P., Wang Y. Y. CrystEngComm, 2016, 18(19): 3358.

[13]

Li X. Y., Liu M., Yue K. F., Wu Y. P., He T., Yan N., Wang Y. Y. CrystEngComm, 2015, 17(43): 8273.

[14]

Dey S. K., Mitra P., Mukherjee A. Cryst. Growth Des., 2015, 15(2): 706.

[15]

Wang S., Zhang R., Wang J., Shen L., Zeng Y., Zhang D. Chem. Res. Chinese Universities, 2014, 30(1): 9.

[16]

Zhou P., Wang C., Qiu Q. M., Yao J. F., Sheng C. F., Li H. Dalton Trans., 2015, 44(40): 17810.

[17]

Zhang H. M., Yang J., Liu Y. Y., Kang D. W., Ma J. F. CrystEng-Comm, 2015, 17(16): 3181.

[18]

Guo X. G., Yang W. B., Wu X. Y., Zhang Q. K., Lin L., Yu R., Chen H. F., Lu C. Z. Dalton Trans., 2013, 42(42): 15106.

[19]

Lee E., Kim Y., Heo J., Park K. M. Cryst. Growth Des., 2015, 15(8): 3556.

[20]

Wang K., Yang E. C., Zhao X. J., Dou H. X., Liu Y. Cryst. Growth Des., 2014, 14(9): 4631.

[21]

Tsymbal L. V., Lampeka Y. D., Boyko V. I., Kalchenko V. I., Shish-kina S. V., Shishkin O. V. CrystEngComm, 2014, 16(18): 3707.

[22]

Park K. M., Lee E., Park C. S., Lee S. S. Inorg. Chem., 2011, 50(23): 12085.

[23]

Henkelis J. J., Ronson T. K., Hardie M. J. CrystEngComm, 2014, 16(18): 3688.

[24]

Liu M., Liao W. P., Hu C. H., Du S. C., Zhang H. J. Angew. Chem. Int. Ed., 2012, 51(7): 1585.

[25]

Tan H. Q., Du S. C., Bi Y. F., Liao W. P. Chem. Commun., 2013, 49(74): 8211.

[26]

Liu Y. Y., Chen C., Ma J. F., Yang J. Crystengcomm, 2012, 14(19): 6201.

[27]

Chen C., Ma J. F., Liu B., Yang J., Liu Y. Y. Cryst. Growth Des., 2011, 11(10): 4491.

[28]

Othman A. B., Cheriaa N., Abidi R., Vicens J., Thuery P., Acta Cryst., 2004, C60, o859-61

[29]

He Y. C., Guo J., Yang J., Liu H. Y., Liu Y. Y., Zhai Q. Y., Shen Q. T., Ma J. F. Polyhedron, 2015, 99: 156.

[30]

Jablonska-Wawrzycka A., Rogala P., Michalkiewicz S., Hodorowicz M., Barszcz B. Dalton Trans., 2013, 42(17): 6092.

[31]

Sheldrick G. M. SHELXL-97, Programs for X-Ray Crystal Structure Solution, 1997.

[32]

Sheldrick G. M. SHELXL-97, Programs for X-Ray Crystal Structure Refinement, 1997.

[33]

Farrugia L. J. WINGX: A Windows Program for Crystal Structure Analysis, 1988.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/