Fluorescence spectroscopic studies on the interaction between a new bismuth(III) Schiff base complex and bovine serum albumin

Xu Li , Chuanhua Li , Jianhong Jiang , Huiwen Gu , Deliang Wei , Lijuan Ye , Jilin Hu , Shengxiong Xiao , Hui Zhang , Xia Li , Qiangguo Li

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 166 -171.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 166 -171. DOI: 10.1007/s40242-017-6361-1
Article

Fluorescence spectroscopic studies on the interaction between a new bismuth(III) Schiff base complex and bovine serum albumin

Author information +
History +
PDF

Abstract

In this work, the binding interaction between a new bismuth(III) Schiff base complex |[Bi(valen)]Cl·2H2O}[H2 valen=N,N'-bis(2-hydroxy-3-methoxyphenylmethylidene)-2,6-pyridinediamine, C21H19N3O4] and bovine serum albumin(BSA) was studied via fluorescence quenching method. The static quenching constant K LB and some thermodynamic parameters(e.g., ΔG θ, ΔH θ and ΔS θ) of the interaction were estimated. In particular, the binding site between the complex and BSA was explored by molecular docking. On the basis of the mechanism of Förster energy transfer, the binding distance between the bismuth(III) Schiff base complex and BSA(Trp.213) as well as the transfer efficiency was obtained. Furthermore, the effect of the bismuth(III) Schiff base complex on the con-formation of BSA was investigated using synchronous fluorescence spectroscopy.

Keywords

Bismuth(III) Schiff base complex / Bovine serum albumin / Fluorescence quenching / Molecular docking

Cite this article

Download citation ▾
Xu Li, Chuanhua Li, Jianhong Jiang, Huiwen Gu, Deliang Wei, Lijuan Ye, Jilin Hu, Shengxiong Xiao, Hui Zhang, Xia Li, Qiangguo Li. Fluorescence spectroscopic studies on the interaction between a new bismuth(III) Schiff base complex and bovine serum albumin. Chemical Research in Chinese Universities, 2017, 33(2): 166-171 DOI:10.1007/s40242-017-6361-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Prabhakaran R., Geetha A., Thilagavathi M., Karvembu R., Krishnan V., Bertagnolli H., Natarajan K. J. Inorg. Biochem., 2004, 98: 2131.

[2]

Backes G. L., Neumanna D. M., Jursic B. S. Bioorg. Med. Chem., 2014, 22: 4629.

[3]

Friedman M., Henika P. R., Mandrell R. E. J. Food Prot., 2003, 66: 1811.

[4]

Jeewoth T., Bhowon M. G., Wah H. L. K. Transition Met. Chem., 1999, 24: 445.

[5]

Jiang J. H., Li X., Xiao S. X., Gu H. W., Li C. H., Yang P., Wei D. L., He D. G., Li A. T., Li X., Yao F. H., Li Q. G. Chem. J. Chinese Uni-versities, 2014, 35(4): 831.

[6]

Li X., Jiang J. H., Han B. X., Gu H. W., Xie Z. F., Chen L., Xiao S. X., Li C. H., Li A. T., Li X., Yao F. H., Wang Q., Li Q. G. Chem. J. Chinese Universities, 2015, 36(5): 856.

[7]

Li C. H., Jiang J. H., Li X., Xiao S. X., Wei D. L., Jiang C., Xie J. Q., Peng M. N., Gu H. W., Li Q. G. Chem. Res. Chinese Universities, 2015, 31(2): 207.

[8]

Li X., Li C. H., Jiang J. H., Gu H. W., Wei D. L., Ye L. J., Hu J. L., Xiao S. X., Guo D. C., Li X., Zhang H., Li Q. G. J. Therm. Anal. Cal., 2016.

[9]

Hu Y. J., Liu Y., Zhang L.X., Zhao R. M., Qu S. S. J. Mol. Struct., 2005, 750: 174.

[10]

Jung Y., Lippard S. J. Chem. Rev., 2007, 107: 1387.

[11]

Bergamo A., Sava G. Dalton Trans., 2007, 1267.

[12]

Guo Q. L., Li R., Joang F. L., Tu J. C., Li L. W., Liu Y. Acta Phys.-Chim. Sin., 2009, 25: 2147.

[13]

Tu B., Li R. R., Liu Z. J., Chen Z. F., Ouyang Y., Hu Y. J. Food Chem., 2016, 208: 192.

[14]

Sulkowska A. J. Mol. Struct., 2002, 614: 227.

[15]

Li M. X., Yang M., Niu J. Y., Zhang L. Z., Xie S. Q. Inorg. Chem., 2012, 51: 12521.

[16]

Du C. R., Luo X., Wei J. R., He T. T., Zheng X. Y., Lin C. W. Chem. Res. Chinese Universities, 2013, 29(5): 854.

[17]

Xiao Q., Huang S., Liu Y., Tian F. F., Zhu J. C. J. Fluoresc., 2009, 19: 317.

[18]

Xu Z. Q., Yang Q. Q., Lan J. Y., Zhang J. Q., Peng W., Jin J. C., Jiang F. L., Liu Y. J. Hazard. Mater., 2016, 301: 242.

[19]

Song F. L., Xue Y. Y., Wang X., Wang J. Y., Xiong X. Q., Peng X. J. Chem. Res. Chinese Universities, 2014, 30(5): 738.

[20]

Li X., Jiang J. H., Xiao S. X., Gu H. W., Li C. H., Ye L. J., Li X., He D. G., Yao F. H., Li Q. G. Thermochim. Acta, 2014, 575: 291.

[21]

Li C. H., Tao X., Jiang J. H., Li X., Xiao S. X., Tao L. M., Zhou J. F., Zhang H., Xie M. A., Zhu Y., Xia Z., Tang S. M., Yuan H. M., Li Q. G. Spectrochim. Acta Part A, 2016, 166: 56.

[22]

Wei Q., Dong J. F., Zhao P. R., Li M. M., Cheng F. L., Kong J. M., Li L. Z. J. Photochem. Photobio. B, 2016, 161: 355.

[23]

Li C. H., Jiang J. H., Li X., Tao L. M., Xiao S. X., Gu H. W., Zhang H., Jiang C., Xie J. Q., Peng M. N., Pan L. L., Xia X. M., Li Q. G. RSC Adv., 2015, 5: 94267.

AI Summary AI Mindmap
PDF

100

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/