Effects of site-directed mutagenesis of L469 in helix-5 of human papillomavirus 16 L1 on pentamer formation

Dong Pan , Lincong Wang , Meiyi Liu , Shi Jin , Liyan Wang , Xianghui Yu , Xiao Zha , Yuqing Wu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 392 -399.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 392 -399. DOI: 10.1007/s40242-017-6357-x
Article

Effects of site-directed mutagenesis of L469 in helix-5 of human papillomavirus 16 L1 on pentamer formation

Author information +
History +
PDF

Abstract

Located at the carboxyl terminal of the human papillomavirus major capsid protein L1, helix-5(h5) is crucial to L1 folding and pentamer formation. Site-directed mutagenesis of the leucine residue on site 469 into lysine, alanine, serine and glycine was performed to explore the effect of the resultant mutations on L1 pentamer formation. The soluble yields of the L1 pentamers of the L469A and L469K mutants were nearly two fold higher than that of the wild type. Molecular dynamics simulation was then performed to reveal the intrinsic mechanisms involved in the improvement of L1 pentamer yield. Accordingly, the secondary structures of h5, β-G2, β-B1, β-C, β-D, and β-F were altered. The altered structures improved the hydrophobic interaction between h5 and β-core “jelly” and the stability of h5. The hydrophobic surface area of residue 469 was reduced by 50% relative to that of the wild type. The C-O group of residue 469 and C-N group of L470 were both exposed to the solvent in the L469A mutant. These modifications may account for the increased solubility and stability and the promotion of pentamer formation induced by the point mutation. Therefore, the changes in the hydrophobic properties of h5 and the core structure determined the pentamer formation and solubility. This study may assist the development of a cost-effective platform for the production of prophylactic virus-like particle vaccines.

Keywords

Human papillomavirus / Capsid protein / Helix-5 / L1 pentamer

Cite this article

Download citation ▾
Dong Pan, Lincong Wang, Meiyi Liu, Shi Jin, Liyan Wang, Xianghui Yu, Xiao Zha, Yuqing Wu. Effects of site-directed mutagenesis of L469 in helix-5 of human papillomavirus 16 L1 on pentamer formation. Chemical Research in Chinese Universities, 2017, 33(3): 392-399 DOI:10.1007/s40242-017-6357-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Motoyama S., Ladines-Llave C. A., Villanueva S. L., Maruo T. Kobe Journal of Medical Sciences, 2004, 50(1): 9.

[2]

Crawford L. V., Crawford E. M. Virology, 1963, 21(2): 258.

[3]

de Villiers E. M., Fauquet C., Broker T. R., Bernard H. U., zur Hau-sen H. Virology, 2004, 324(1): 17.

[4]

Clifford G. M., Gallus S., Herrero R., Muñoz N., Snijders P. J. F., Vaccarella S. Lancet, 2005, 366(9490): 991.

[5]

Karanam B., Jagu S., Huh W. K., Roden R. B. Immunol. Cell Biol., 2009, 87(4): 287.

[6]

Conway M. J., Meyers C. J. Dent. Res., 2009, 88(4): 307.

[7]

Bishop B., Dasgupta J., Klein M., Garcea R. L., Christensen N. D., Zhao R. J. Biol. Chem., 2007, 282(43): 31803.

[8]

Bishop B., Dasgupta J., Chen X. S. Virol. J., 2007, 4: 3.

[9]

Xie X., Liu Y., Zhang T., Xu Y., Bao Q., Chen X. Arch. Virol., 2013, 158(1): 193.

[10]

Kemp T. J., Hildesheim A., Safaeian M., Dauner J. G., Pan Y., Porras C. Vaccine, 2011, 29(11): 2011.

[11]

Brown D. R., Kjaer S. K., Sigurdsson K., Iversen O. E., Hernan-dez-Avila M., Wheeler C. M. J. Infect. Dis., 2009, 199(7): 926.

[12]

Colmenares V., Noyola D. E., Monsivais-Urenda A., Salga-do-Bustamante M., Estrada-Capetillo L., Gonzalez-Amaro R. Clin. Vaccine Immunol., 2012, 19(7): 1005.

[13]

Chen X. S., Garcea R. L., Goldberg I., Casini G., Harrison S. C. Mol. Cell, 2000, 5(3): 557.

[14]

Pan D., Zha X., Yu X., Wu Y. Protein Expres. Purif., 2016, 120: 92.

[15]

Bazan S. B., de Alencar Muniz Chaves A., Aires K. A., Cianciarullo A. M., Garcea R. L., Ho P. L. Arch. Virol., 2009, 154(10): 1609.

[16]

Chen X. S., Casini G., Harrison S. C., Garcea R. L. J. Mol. Biol., 2001, 307: 173.

[17]

Touze A., El Mehdaoui S., Sizaret P. Y., Mougin C., Muñoz N., Coursaget P. J. Clin. Microbiol., 1998, 36(7): 2046.

[18]

Millan A. F. S., Ortigosa S. M., Hervas-Stubbs S., Corral-Martinez P., Segui-Simarro J. M., Gaetan J. Plant Biotechnol. J., 2008, 6(5): 427.

[19]

Zanotto C., Pozzi E., Pacchioni S., Bissa M., De Giuli Morghen C., Radaelli A. J. Transl. Med., 2011, 9: 190.

[20]

Hanumantha R. N., Babu B. P., Rajendra L., Sriraman R., Pang Y. Y., Schiller J. T. Vaccine, 2011, 29(43): 7326.

[21]

Senger T., Schadlich L., Gissmann L., Muller M. Virology, 2009, 388(2): 344.

[22]

Jin S., Pan D., Zha X., Yu X., Wu Y., Liu Y., Yin F., Chen X. S. Mol. Biosyst., 2014, 10(4): 724.

[23]

Zheng D. D., Pan D., Zha X., Wu Y., Jiang C., Yu X. Chem. Com-mun., 2013, 49(76): 8546.

[24]

Hansson T., Oostenbrink C., van Gunsteren W. Curr. Opin. in Struc. Biol., 2002, 12: 190.

[25]

Hirst J. D., Glowacki D. R., Baaden M. Faraday Discuss., 2014, 169: 9.

[26]

Hudiyanti D., Radifar M., Raharjo T. J., Narsito N., Noegrohati S. J. Chem., 2014, 2014: 1.

[27]

Wong A. K. L., Goscinski A. M. Procedia Computer Science, 2012, 9: 136.

[28]

Wang L. Arxiu, 2016.

[29]

Kozisek M., Lepsik M., Grantz Saskova K., Brynda J., Konvalinka J., Rezacova P. FEBS J., 2014, 281(7): 1834.

[30]

Singharoy A., Polavarapu A., Joshi H., Baik M. H., Ortoleva P. J. Am. Chem. Soc., 2013, 135(49): 18458.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/