Molecular dynamics simulation of antipolyelectrolyte effect and solubility of polyzwitterions

Shengchun Yang , Youliang Zhu , Hujun Qian , Zhongyuan Lü

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 261 -267.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 261 -267. DOI: 10.1007/s40242-017-6354-0
Article

Molecular dynamics simulation of antipolyelectrolyte effect and solubility of polyzwitterions

Author information +
History +
PDF

Abstract

In this work, by using coarse-grained molecular dynamics simulations, we found that poly(2-metha- cryloyloxyethyl phosphorylcholine)(PMPC) showed a strong solubility and a so-called antipolyelectrolyte effect(APE) in water. In contrast, obvious aggregations but no APE were found in n-butyl-substituted choline phosphate polymers(PMBP) solutions. The underlying mechanisms for different solution behaviors of PMPC and PMBP were investigated in detail. Our results indicate that the presence of butyl groups in PMBP enhances both the electrostatic interactions and the hydrophobicity of PMBP molecules in the system. Both factors were found to contribute to the formations of aggregates in the PMBP system. Further researches revealed that hydrophobicity arising from the butyl group plays a more important role than electrostatic interactions in inducing the PMBP aggregation. In addition, the strong hydrophobicity in PMBP was found to be responsible for the absence of APE. These results are expected to contribute to a better understanding and a better design of the solution properties of polyzwitterions.

Keywords

Polyzwitterion / Antipolyelectrolyte / Solubility / Dissipative particle dynamics(DPD)

Cite this article

Download citation ▾
Shengchun Yang, Youliang Zhu, Hujun Qian, Zhongyuan Lü. Molecular dynamics simulation of antipolyelectrolyte effect and solubility of polyzwitterions. Chemical Research in Chinese Universities, 2017, 33(2): 261-267 DOI:10.1007/s40242-017-6354-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Morozova S., Hu G., Emrick T., Muthukumar M. ACS Macro Lett., 2016, 5: 118.

[2]

Shiraishi K., Ohnishi T., Sugiyama K., Okada K., Matsuo O. Chem. Lett., 1997, 863.

[3]

Ho S., Nakabayashi N., Iwasaki Y., Boland T., LaBerge M. Biomate-rials, 2003, 24: 5121.

[4]

Li Z., Shi X. J. Chem. Res. Chinese Universities, 2012, 32(3): 520.

[5]

Sugiyama K., Shiraishi K., Okada K. Polym. J., 1999, 31(10): 883.

[6]

Ishihara K., Shnozuka T., Hanazaki Y., Nakabayashi N. J. Biomater., Polym. Ed., 1999, 10: 271.

[7]

Yoneyama T., Sugihara K., Ishihara K., Iwasaki Y., Nakabayashi N. Biomaterials, 2002, 23: 1455.

[8]

Lin S. Z., Wang S. H. Journal of Northeast Dianli University, 2016, 3: 69.

[9]

Sun B., Yan D. F., Yang D. Journal of Northeast Dianli University, 2016, 1: 74.

[10]

Huglin M. B., Radwan M. A. Polym. Int., 1991, 26: 97.

[11]

Schulz D. N., Peiffer D. G., Agarwal P. K., Larabee J., Kaladas J. J., Soni L., Handwerker B., Garner R. T. Polymer, 1986, 27: 1734.

[12]

Salamone J. C., Volksen W., Olson A. P., Israel S. C. Polymer, 1978, 19: 1157.

[13]

Soto V. M. M., Galin J. C. Polymer, 1984, 25: 254.

[14]

Kato T., Takahashi A. Ber. Bunsenges. Phys. Chem., 1996, 100: 784.

[15]

Kudaibergenov S. E. In Encyclopedia of Polymer Science and Technology, John Wiley&Sons, New York, 2008.

[16]

Niu A., Liaw D., Sang H., Wu C. Macromolecules, 2000, 33: 3492.

[17]

Liaw D., Huang C. Polymer, 1997, 38(26): 6355.

[18]

Matsuda Y., Kobayashi M., Annaka M., Ishihara K., Takahara A. Chem. Lett., 2006, 35(11): 1310.

[19]

Georgiev G. S., Kamenska E. B., Vassileva E. D., Kamenova I. A., Georgieva V. T., Iliev S. B., Ivanov I. A. Biomacromolecules, 2006, 7: 1329.

[20]

Bredas J. R., Chance R. R., Silbey R. Macromolecules, 1988, 21: 1633.

[21]

Tsonchev S., Troisi A., Schatz G. C., Ratner M. A. J. Phys. Chem. B, 2004, 108: 15278.

[22]

Dobrynin A. V., Colby R. H., Rubinstein M. J. Polym. Sci., Part B: Polym. Phys., 2004, 42: 3513.

[23]

Edwards S. F., King R. P., Pincus P. Ferroelectrics, 1980, 30: 3.

[24]

Higgs P. G., Joanny J. J. Chem. Phys., 1991, 94(2): 1543.

[25]

Hoogerbrugge P. J., Koelman J. M. V. A. Europhys. Lett., 1992, 19: 155.

[26]

Yang K., Ma Y. Q. Aust. J. Chem., 2011, 64(7): 894.

[27]

Yang K., Ma Y. Q. Nature Nanotechnology, 2010, 5: 579.

[28]

He L., Zhang L., Liang H. J. Phys. Chem. B, 2008, 112(14): 4194.

[29]

Li X., Pivkin I. V., Liang H., Karniadakis G. E. Macromolecules, 2009, 42(8): 3195.

[30]

He L., Zhang L., Ye Y., Liang H. J. Phys. Chem. B, 2010, 114(21): 7189.

[31]

Mao J., Chen P., Liang J., Guo R., Yan L. T. ACS Nano, 2016, 10(1): 1493.

[32]

Guo R., Mao J., Yan L. T. ACS Nano, 2013, 7(12): 10646.

[33]

Liang J., Chen P., Dong B., Huang Z., Zhao K., Yan L. T. Bioma-cromolecules, 2016, 17(5): 1834.

[34]

Ye X., Li Z. W., Sun Z. Y., Khomami B. ACS Nano, 2016, 10(5): 5199.

[35]

Li Z. W., Liu Y. H., Liu Y. T., Lu Z. Y. Sci. China Chem., 2011, 54.

[36]

Yamamoto S., Maruyama Y., Hyodo S. A. J. Chem. Phys., 2002, 116: 5842.

[37]

Groot R. D. J. Chem. Phys., 2003, 118: 11265.

[38]

González-Melchor M., Mayoral E., Velázquez M. E., Alejandre J. J. Chem. Phys., 2006, 125: 224107.

[39]

Yang S. C., Wang Y. L., Jiao G. S., Qian H. J., Lu Z. Y. J. Comput. Chem., 2016, 37: 378.

[40]

Yang S. C., Qian H. J., Lu Z. Y. Appl. Comput. Harmon. Anal., 2016.

[41]

Hedman F., Laaksonen A. Chem. Phys. Lett., 2006, 425: 142.

[42]

Hedman F. Algorithms for Molecular Dynamics Simulations: Ad-vancing the Computational Horizon, Stockholm University, Stock-holm, 2006.

[43]

Wang Y. L., Lu Z. Y., Laaksonen A. Phys. Chem. Chem. Phys., 2012, 14: 8348.

[44]

Wang Y. L., Laaksonen A., Lu Z. Y. J. Comput. Phys., 2013, 235: 666.

[45]

Wang Y. L. Electrostatic Interactions in Coarse-grained Simulations: Implementations and Applications, Stockholm University, Stockholm, 2013.

[46]

Zhu Y. L., Liu H., Li Z. W., Qian H. J., Milano G., Lu Z. Y. J. Com-put. Chem., 2013, 34: 2197.

[47]

Fujiwara S., Sato T. J. Chem. Phys., 2001, 114: 6455.

AI Summary AI Mindmap
PDF

103

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/