Copper(II) complexes based on 4′-R-terpyridine: Synthesis, structures, and photocatalytic properties

Xia Yan , Jianxin Zhang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 1 -6.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 1 -6. DOI: 10.1007/s40242-017-6319-3
Article

Copper(II) complexes based on 4′-R-terpyridine: Synthesis, structures, and photocatalytic properties

Author information +
History +
PDF

Abstract

Complexes Cu(II)(4′-R-terpyridine)2(ClO4)2[R=2-thienyl(1), 2-(5-bromothienyl)(2), 2-(5-methyl-thienyl)(3) and 2-(5-methoxythienyl)(4)] were synthesized, and their structures were determined by single-crystal X-ray diffraction analyses and were further characterized by high resolution mass spectrometry, infrared spectrosco-py(IR), as well as elemental analysis. Single crystal X-ray diffraction analysis shows that Cu(II) ions in the complexes are both six-coordinated with N6 coordination sphere, displaying distorted octahedral geometries. In addition, the UV-Vis absorption spectra show that the four complexes all exhibit absorption components in both UV and visible light regions. Thus, the photocatalytic activities of the four complexes in the degradation of organic dyes were investigated.

Keywords

Copper(II) complex / Single crystal structure / Photocatalytic property

Cite this article

Download citation ▾
Xia Yan, Jianxin Zhang. Copper(II) complexes based on 4′-R-terpyridine: Synthesis, structures, and photocatalytic properties. Chemical Research in Chinese Universities, 2017, 33(1): 1-6 DOI:10.1007/s40242-017-6319-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Schubert U. S., Hofmeier H., Newkome G. R. Modern Terpyridine Chemistry, 2006

[2]

Constable E. C. Chem. Soc. Rev., 2007, 36: 246.

[3]

Constable E. C. Corrd. Chem. Rev., 2008, 52: 842.

[4]

Wild A., Winter A., Schlütter F., Schubert U. S. Chem. Soc. Rev., 2011, 40: 1459.

[5]

Juris A., Balzani V., Barigelletti F., Campagna S., Belser P., Zelewsky A. V. Coord. Chem. Rev., 1988, 84: 85.

[6]

Encinas S., Flamigni L., Barigelletti F., Constable E. C., Housecroft C. E., Schofield E., Figgemeier E., Fenske D., Neuburger M., Vos J. G., Zehnder M. Chem.-Eur. J., 2002, 8: 137.

[7]

Benniston A. C., Grosshenny V., Harriman A., Ziessel R. Dalton Trans., 2004, 1227.

[8]

Hjelm J., Handel R. W., Hagfeldt A., Constable E. C., Housecroft C. E., Forster R. J. Inorg. Chem., 2005, 44: 1073.

[9]

Hjelm J., Constable E. C., Figgemeier E., Hagfeldt A., Handel R., Housecroft C. E., Mukhtar E., Schofield E. Chem. Commun., 2002, 284.

[10]

Benniston A. C., Grosshenny V., Harriman A., Ziessel R. Dalton Trans., 2004, 1227.

[11]

Harriman A., Ziessel R. Chem. Commun., 1996, 1707.

[12]

Constable E. C., Figgemeier E., Housecroft C. E., Kokatam S. L., Medlycott E. A., Neuburger M., Schaffner S., Zampese J. A. Dalton Trans., 2008, 6752.

[13]

Harriman A., Mayeux A., Nicola A. D., Ziessel R. Phys. Chem. Chem. Phys., 2002, 4: 2229.

[14]

Büschel M., Helldobler M., Daub J. Chem. Commun., 2002, 1338.

[15]

Ringenbach C., Nicola A. D., Ziessel R. J. Org. Chem., 2003, 68: 4708.

[16]

Benniston A. C., Harriman A., Lawrie D. J., Mayeux A. Phys. Chem. Chem. Phys., 2004, 6: 51.

[17]

Barbieri A., Ventura B., Barigelletti F., Nicola A. D., Quesada M., Ziessel R. Inorg. Chem., 2004, 43: 7359.

[18]

Winter A., Egbe D. A. M., Schubert U. S. Org. Lett., 2007, 9: 2345.

[19]

Meyer A., Schnakenburg G., Glaum R., Schiemann O. Inorg. Chem., 2015, 54: 8456.

[20]

Elgrishi N., Chambers M. B., Artero V., Fontecave M. Phys. Chem. Chem. Phys., 2014, 16: 13635.

[21]

Docherty R., Tuna F., Kilner C. A., McInnes E. J. L., Malcolm M. A. Chem. Commun., 2012, 48: 4055.

[22]

Constable E. C., Decurtins S., Housecroft C. E., Keene T. D., Palivan C. G., Price J. R., Zampese J. A. Dalton Trans., 2010, 39: 2337.

[23]

Gasnier A., Royal G., Terech P. Langmuir, 2009, 25: 8751.

[24]

Steill J., Zhao J. F., Siu C. K., Ke Y. Y., Verkerk U. H., Oomens J., Dunbar R. C., Hopkins A. C., Siu M. K. W. Angew. Chem. Int. Ed., 2008, 47: 9666.

[25]

Drew M. G. B., Foreman M. R. S.t. J., Geist A., Hudson M. J., Mar-ken F., Norman V., Weigl M. Polyhedron, 2006, 25: 888.

[26]

Alonso C., Ballester L., Gutierrez A., Perpinan M. F., Anchez A. E., Azcondo M. T. Eur. J. Inorg. Chem., 2005, 486.

[27]

Dobrawa R., Lysetska M., Ballester P., Gruene M., Wuerthner F. Macromolecules, 2005, 38: 1315.

[28]

Allmann R., Henke W., Reinen D. Inorg. Chem., 1978, 17: 378.

[29]

Kharat A. N., Bakhoda A., Hajiashrafi T. J. Mol. Catal. A: Chem., 2010, 333: 94.

[30]

Patel M. N., Dosi P. A., Bhatt B. S. Appl. Organometal. Chem., 2011, 25: 653.

[31]

Patel M. N., Joshi H. N., Patel C. R. Appl. Organometal. Chem., 2012, 26: 641.

[32]

Naseri Z., Kharat A. N., Banavand A., Bakhoda A., Foroutannejad S. Polyhedron, 2012, 33: 396.

[33]

Patel M. N., Joshi H. N., Patel C. R. J. Organometal. Chem., 2012, 701: 8.

[34]

Fang W. W., Liu C., Chen J. B., Lu Z. W., Li Z. M., Bao X. L., Tu T. Chem. Commun., 2015, 51: 4267.

[35]

Fang W. W., Sun Z. M., Tu T. J. Phys. Chem. C, 2013, 117: 25185.

[36]

Mahendiran D., Kumar R. S., Viswanathan V., Velmurugan D., Ra-himan A. K. Dalton Trans., 2016, 45: 7794.

[37]

Sheldrick G. M. SHELXS 97, Program for Crystal Structure Refinement, 1997, Göttingen: University of Göttingen.

[38]

Sheldrick G. M. SHELXS 97, Program for Crystal Structure Solution, 1997, Göttingen: University of Göttingen.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/