Rapid prediction of interaction energies for nucleoside-containing hydrogen-bonded complexes: Lone-pair dipole moment treatment for adenine, cytosine and guanine

Cuiying Huang , Qiang Hao , Changsheng Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 94 -99.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 94 -99. DOI: 10.1007/s40242-017-6295-7
Article

Rapid prediction of interaction energies for nucleoside-containing hydrogen-bonded complexes: Lone-pair dipole moment treatment for adenine, cytosine and guanine

Author information +
History +
PDF

Abstract

In this paper, the polarizable dipole-dipole interaction model was further developed via adding lone-pair dipole moment treatment for nucleobase adenine, cytosine, and guanine. Not only polar covalent bonds, such as C=O, C―O, N―H, C―H and O―H were regarded as bond dipoles, but also nitrogens with lone-pair electrons of adenine, cytosine, and guanine were regarded as lone-pair dipoles. The parameters needed were first determined by treating model complexes. The model was subsequently applied to a series of nucleobase- and nucleoside-containing hydrogen-bonded complexes to rapidly predict the equilibrium hydrogen bond distances and the intermolecular inte-raction energies. It was observed that the model developed in this work reproduce the MP2/6-31+G(d,p) and B3LYP/6-31+G(d,p) equilibrium hydrogen bond distances with a root mean square error of less than 0.004 nm and the counterpoise-corrected MP2/aug-cc-pVTZ intermolecular interaction energies with a root mean square error of less than 2.93 kJ/mol, which was also highly efficient, demonstrating that the model developed in this work was rea-sonable and useful.

Keywords

Nucleoside / Lone-pair dipole / Hydrogen bond / Interaction energy

Cite this article

Download citation ▾
Cuiying Huang, Qiang Hao, Changsheng Wang. Rapid prediction of interaction energies for nucleoside-containing hydrogen-bonded complexes: Lone-pair dipole moment treatment for adenine, cytosine and guanine. Chemical Research in Chinese Universities, 2017, 33(1): 94-99 DOI:10.1007/s40242-017-6295-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lejeune D., Delsaux N., Charloteaux B., Thomas A., Brasseur R. Proteins: Struct. Funct. Bioinf., 2005, 61: 258.

[2]

Brovarets O. O., Yurenkoc Y. P., Hovoruna D. M. J. Biomol. Struct. Dyn., 2014, 33: 1624.

[3]

Wu Y. D., Zhao Y. L. J. Am. Chem. Soc., 2001, 123: 5313.

[4]

Wang C. S., Zhang Y., Gao K., Yang Z. Z. J. Chem. Phys., 2005, 123: 024307.

[5]

Wang M., Wales T. E., Fitzgerald M. C. Proc. Natl. Acad. Sci., 2006, 103: 2600.

[6]

Stranges P. B., Kuhlman B. Protein Sci., 2013, 22: 74.

[7]

Dong H., Hua W. J., Li S. H. J. Phys. Chem. A, 2007, 111: 2941.

[8]

Sun C. L., Jiang X. N., Wang C. S. J. Comput. Chem., 2009, 30: 2567.

[9]

Jiang X. N., Wang C. S. ChemPhysChem, 2009, 10: 3330.

[10]

Korth M., Pitonák M., Rezác J., Hobza P. J. Chem. Theory Comput., 2010, 6: 344.

[11]

Korth M. J. Chem. Theory Comput., 2010, 6: 3808.

[12]

Li Y., Jiang X. N., Wang C. S. J. Comput. Chem., 2011, 32: 953.

[13]

Li Y., Wang C. S. J. Comput. Chem., 2011, 32: 2765.

[14]

Hua S., Xu L., Li W., Li S. J. Phys. Chem. B, 2011, 115: 11462.

[15]

Gao Y., Lu X., Duan L. L., Zhang J. Z. H., Mei Y. J. Phys. Chem. B, 2012, 116: 549.

[16]

Zhao G. J., Han K. L. J. Phys. Chem. A, 2007, 111: 2469.

[17]

Zhao G. J., Han K. L. Acc. Chem. Res., 2012, 45: 404.

[18]

Zhao G. J., Liu J. Y., Zhou L. C., Han K. L. J. Phys. Chem. B, 2007, 111: 8940.

[19]

Zhao G. J., Han K. L. Biophys. J., 2008, 94: 38.

[20]

Liang P., Arthur B. P. Science, 1992, 257: 967.

[21]

Riley K. E., Pitonák M., Jurecka P., Hobza P. Chem. Rev., 2010, 110: 5023.

[22]

Rezác J., Hobza P. J. Chem. Theory Comput., 2013, 9: 2151.

[23]

Rezác J., Riley K. E., Hobza P. J. Chem. Theory Comput., 2011, 7: 2427.

[24]

Jurecka P., Hobza P. J. Am. Chem. Soc., 2003, 125: 15608.

[25]

Dabkowska I., Jurecka P., Hobza P. J. Chem. Phys., 2005, 122: 204322.

[26]

Chin W., Piuzzi F., Dimicoli I., Mons M. Phys. Chem. Chem. Phys., 2006, 8: 1033.

[27]

Li S. S., Huang C. Y., Hao J. J., Wang C. S. J. Comput. Chem., 2014, 35: 415.

[28]

Hao J. J., Wang C. S. RSC Adv., 2015, 5: 6452.

[29]

Gao X. C., Huang C. Y., Wang C. S. Comput. Theor. Chem., 2014, 1048: 46.

[30]

Hao J. J., Li S. S., Jiang X. N., Li X. L., Wang C. S. Theor. Chem. Acc., 2014, 133: 1515.

[31]

Jones S., Heyningen P. V., Berman H. M., Thornton J. M. J. Mol. Biol., 1999, 287: 877.

[32]

Allers J., Shamoo Y. J. Mol. Biol., 2001, 311: 75.

[33]

Cheng A. C., Chen W. W., Fuhrmann C. N., Frankel A. D. J. Mol. Biol., 2003, 327: 781.

[34]

Mukherjee S., Majumdar S., Bhattacharyya D. J. Phys. Chem. B, 2005, 109: 10484.

[35]

Gu J. D., Wang J., Leszczynski J. J. Phys. Chem. B, 2006, 110: 13590.

[36]

Czyżnikowska Ż., Lipkowski P., Góra R., Zaleśny R., Cheng A. C. J. Phys. Chem. B, 2009, 113: 11511.

AI Summary AI Mindmap
PDF

105

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/