Synergistic inhibition effect of sodium silicate and acrylamide on the corrosion of carbon steel in a high-concentration KCl solution

Jingmao Zhao , Manlu Zhang , Zhiwei Tie

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 100 -106.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 100 -106. DOI: 10.1007/s40242-017-6286-8
Article

Synergistic inhibition effect of sodium silicate and acrylamide on the corrosion of carbon steel in a high-concentration KCl solution

Author information +
History +
PDF

Abstract

The corrosion inhibition performances of sodium silicate(Na2SiO3) and acrylamide(AM) for Q235 carbon steel in a high-concentration KCl solution(25%, mass fraction) were investigated via static mass loss method, elec-trochemical measurements, scanning electron microscopy(SEM), X-ray photoelectron spectroscopy(XPS) and Auger electron spectroscopy(AES). AM shows poor inhibition performance, while Na2SiO3 exhibits a better inhibition per-formance. Moreover, the steel gains mass instead of losing mass in the presence of 0.5% Na2SiO3 and 0.5% AM, in-dicating that the corrosion is completely inhibited. SEM analysis indicates that a compact protective film is formed on the steel surface by the combined use of inhibitors. Our results demonstrate that Na2SiO3 and AM could have a synergistic effect on steel corrosion in high concentrations of KCl. The synergistic inhibition mechanism is further conjectured by the XPS and AES analysis.

Keywords

KCl solution / Sodium silicate / Acrylamide / synergistic inhibition effect / Corrosion inhibitor

Cite this article

Download citation ▾
Jingmao Zhao, Manlu Zhang, Zhiwei Tie. Synergistic inhibition effect of sodium silicate and acrylamide on the corrosion of carbon steel in a high-concentration KCl solution. Chemical Research in Chinese Universities, 2017, 33(1): 100-106 DOI:10.1007/s40242-017-6286-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Liu P. D., Liu C. H., Liao S. M., Wu X. Z., Yue H., Wu X. Z., Xiong J. Y. Nat. Gas Ind., 2005, 25(4): 83.

[2]

Cai L. The Research and Application of Environmentally Friendly Completion Fluid, 2009.

[3]

Zheng J. S., Lv Z. P., Tang Y., Peng F. M. Corros. Prot., 1997, 5: 7.

[4]

Liu F. G., The Study of Corrosion Mechanism of Drill Pipe and Pipe-line, Inhibition and Mechanism of the Inhibitor for Drill Pipe and Pipeline, Ocean Univ. China, Qingdao, 2008

[5]

Yuan M. R., Lu J. T., Kong G. Surf., Coat. Technol., 2010, 204(8): 1229.

[6]

Lin B. L., Lu G. T., Kong G. Surf., Coat. Technol., 2008, 202(9): 1831.

[7]

Gao H., Li Q., Chen F. N., Dai Y., Luo F., Li L. Q. Corros. Sci., 2011, 53(4): 1401.

[8]

Taylor S. R., Chambers B. D. Corros., 2008, 64(3): 255.

[9]

Salasi M., Shahrabi T., Roayaei E., Aliofkhazraei M. Mater. Chem. Phys., 2007, 104(1): 183.

[10]

Aramaki K. Corros. Sci., 2002, 44(4): 871.

[11]

Li Y., Zhang Z. G., Shen D. G., Ma Q. L. Technol. Dev. Chem. Ind., 2008, 37(10): 17.

[12]

Zhang C., Zhao J. M. Acta Phys. Chim. Sin., 2014, 30(4): 677.

[13]

Zhao J. M., Duan H. B., Jiang R. J. Corros. Sci., 2015, 91: 108.

[14]

Zhang B. R., He C. J., Chen X., Tian Z. P., Li F. T. Corros. Sci., 2015, 90(1): 585.

[15]

Zhao L. N., Xu C. C. Corros. Prot., 2008, 8: 460.

[16]

Ren X. G., Zhou J. M., Song Y. J., Liu D. Pet. Geol. Recovery Effic., 2010, 17(6): 104.

[17]

Wang L., Hu R., Wang X. H., Li J. S., Wang Y. C., Chen H. China Pet. Mach., 2006, 34(10): 1.

[18]

Chen G. H. Study of the Inhibition Mechanism and Synergistic Effect of Corrosion Inhibitors in Sweet System, Beijing Univ. Chem. Tech-nol., Beijing, 2012.

[19]

Zeng J. Ind. Water Treat., 1984, 4(1): 14.

[20]

Ni T. J., Wang W. X., Cai L. K. Corros. Prot., 2001, 22(11): 479.

[21]

Li H. H., Wu J. Q., Yi S. Z. Hangzhou Chem. Ind., 2007, 37(2): 17.

[22]

Zhu Y. L., Guo X. P. J. Chin. Soc. Corros. Prot., 2008, 28(5): 271.

AI Summary AI Mindmap
PDF

155

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/