Measurements and calculations of solid-liquid equilibria in quaternary system Li2SO4-Na2SO4-K2SO4-H2O at 288 K

Ruizhi Cui , Lei Yang , Wei Wang , Shihua Sang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 460 -465.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (3) : 460 -465. DOI: 10.1007/s40242-017-6275-y
Article

Measurements and calculations of solid-liquid equilibria in quaternary system Li2SO4-Na2SO4-K2SO4-H2O at 288 K

Author information +
History +
PDF

Abstract

The isothermal dissolution equilibrium method has been used to investigate the solid and liquid equilibria of quaternary system Li2SO4-Na2SO4-K2SO4-H2O at 288 K. The phase diagram and water diagram were plotted according to the experiment results. It was found that Li2SO4-Na2SO4-K2SO4-H2O quaternary system contains four double salts at 288 K. There are six invariant points, twelve univariant curves and seven areas of crystallization: Li2SO4 H2O, Na2SO4 10H2O, K2SO4, Li2SO4 3Na2SO4 12H2O, Li2SO4 K2SO4, Na2SO4 3K2SO4, 2Li2SO4 Na2SO4 K2SO4. Using the equilibrium solubility data of the quaternary system at 288 K, the solubility product(lnK sp) of solid phase 2Li2SO4 Na2SO4 K2SO4, which is not reported was acquired. Based on the chemical model of Pitzer’s electrolyte solution theory, the solubilities for the quaternary system Li2SO4-Na2SO4-K2SO4-H2O at 288 K were calculated with corresponding parameters. Compared the results of experimental measurement with those of calculation, it was showed that the calculated values had a good agreement with the experimental ones.

Keywords

Salt-water system / Phase equilibrium / Solubility / Sulfate / Pitzer’s Equation

Cite this article

Download citation ▾
Ruizhi Cui, Lei Yang, Wei Wang, Shihua Sang. Measurements and calculations of solid-liquid equilibria in quaternary system Li2SO4-Na2SO4-K2SO4-H2O at 288 K. Chemical Research in Chinese Universities, 2017, 33(3): 460-465 DOI:10.1007/s40242-017-6275-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Fu J. L., Yu S. S., Li S. J., Ren H. Y. J. Salt Lake Res., 2005, 13(3): 17.

[2]

Yang H. X., Zeng Y. J. Chem. Eng. Data, 2011, 56(1): 53.

[3]

Peng Y., Zeng Y., Su S. J. Chem. Eng. Data, 2011, 56(3): 458.

[4]

Song P. S., Yao Y. Calphad, 2003, 27(4): 343.

[5]

Sang S. H., Zhang X. J. Chem. Eng. Data, 2010, 55(2): 808.

[6]

Sang S. H., Fu C., Zhang T. T., Zhang X. P., Xiao L. J. Chem. Res. Chinese Universities, 2016, 32(1): 90.

[7]

Sang S. H., Li H., Sun M. L., Peng J. J. Chem. Eng. Data, 2011, 56(5): 1956.

[8]

Sang S. H., Peng J. Calphad, 2010, 34(1): 64.

[9]

Skarulis J. A., Haran H. A. J. Am. Chem. Soc., 1955, 77(13): 3489.

[10]

Campbell A. N., Kartzmark E. M. Can. J. Chem., 1958, 23(11): 511.

[11]

Guo Y. F., Liu Y. H., Wang Q., Lin C. X., Wang S. Q., Deng T. L. J. Chem. Eng. Data, 2013, 58(10): 2763.

[12]

Ji Z. Y., Peng J. L., Yuan J. S., Li D. C., Zhao Y. Y. Fluid Phase Equilibria, 2015, 397(13): 81.

[13]

Guo F., Gao D. L., Han H. J., Shen D. L., Wang S. Q., Deng T. L. Fluid Phase Equilibria, 2013, 358(22): 56.

[14]

Lin X. F., Zeng Y., Zheng Z. Y., Sang S. H. Ind. Miner. Process, 2007, 5: 4.

[15]

Bu B. H., Li L., Zhang N., Guo Y. F., Wang S. Q., Sun L. Y., Deng T. L. Fluid Phase Equilibria, 2015, 402(18): 78.

[16]

Wang S. Q., Guo Y. F., Li D. C., Tang P., Deng T. L. Thermochimica Acta, 2015, 601(3): 75.

[17]

Greenberg J. P., Moller N. Geoehim. Cosmoehim. Acta, 1989, 53(10): 2503.

[18]

Zeng Y., Lin X. F., Yu X. D. J. Chem. Eng. Data, 2012, 57(12): 3672.

[19]

Pitzer K. S. J. Phys. Chem., 1973, 77(2): 268.

[20]

Holmes H. F., Mesmer R. E. J. Sol. Chem., 1986, 15(6): 495.

AI Summary AI Mindmap
PDF

91

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/