A gas chromatographic stationary of homochiral metal-peptide framework material and its applications

Lang Li , Shengming Xie , Junhui Zhang , Ling Chen , Pengjing Zhu , Liming Yuan

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 24 -30.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 24 -30. DOI: 10.1007/s40242-017-6270-3
Article

A gas chromatographic stationary of homochiral metal-peptide framework material and its applications

Author information +
History +
PDF

Abstract

Homochiral metal-organic frameworks(HMOFs) have special properties, such as high surface area, fasci-nating structures and excellent chemical and thermal stability and they have broad application prospects. In this work, we reported the use of HMOF Co-L-GG(L-GG, dipeptide H-Gly-L-Glu) as the stationary phase for separating race-mates in gas chromatography. Co-L-GG coated fused silica capillary column(10 m×250 μm i.d.) was prepared via a dynamic coating method. Thirty racemates belonging to different classes of organic compounds were resolved in-cluding halohydrocarbons, ketones, esters, ethers, organic acids, epoxyalkanes, alcohols and sulfoxides. When com-pared with the previously reported chiral MOFs-coated capillary columns, the Co-L-GG coated column exhibited broader chiral resolution ability towards chiral compounds.

Keywords

Homochiral metal-organic framework / Stationary phase / Gas chromatography / Chiral separation

Cite this article

Download citation ▾
Lang Li, Shengming Xie, Junhui Zhang, Ling Chen, Pengjing Zhu, Liming Yuan. A gas chromatographic stationary of homochiral metal-peptide framework material and its applications. Chemical Research in Chinese Universities, 2017, 33(1): 24-30 DOI:10.1007/s40242-017-6270-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yaghi O. M., O’Keeffe M., Ockwig N. W., Chae H. K., Eddaoudi M., Kim J. Nature, 2003, 423(6841): 705.

[2]

Long J. R., Yaghi O. M. Chem. Soc. Rev., 2009, 38(5): 1213.

[3]

Li Y. X., Xue M., Guo L. J., Huang L., Chen S. R., Qiu S. L. Chem. Res. Chinese Universities, 2013, 29(2): 196.

[4]

Qu X. J., Wang S., Zhang D. J., Jing X. M., Zhang L. R., Li G. H., Huo Q. S., Liu Y. L. Chem. Res. Chinese Universities, 2012, 28(4): 581.

[5]

Hu K. Q., Kou H. Z. Chem. J. Chinese Universities, 2012, 33(5): 892.

[6]

Furukawa H., Cordova K. E., O’keeffe M., Yaghi O. M. Science, 2013, 341: 1230444.

[7]

Tang Q., Liu Y. W., Liu S. X., He D. F., Miao J., Wang X. Q., Yang G. C., Shi Z., Zheng Z. P. J. Am. Chem. Soc., 2014, 136(35): 12444.

[8]

Zhang G. C., Qiao C. F., Liang J. H., Wei Q., Xia Z. Q., Chen S. P. Chem. Res. Chinese Universities, 2015, 31(4): 489.

[9]

Yuan D., Zhao D., Sun D., Zhou H. Angew. Chem. Int. Ed., 2010, 49(31): 5357.

[10]

Wang J., Luo X. L., Yuan Y., Zhang L. R. Chem. Res. Chinese Uni-versities, 2015, 31(4): 503.

[11]

Zhao X. B., Xiao B., Fletcher A. J., Thomas K. M., Bradshaw D., Rosseinsky M. J. Science, 2004, 306(5698): 1012.

[12]

Vitillo J. G., Regli L., Chavan S., Ricchiardi G., Spoto G., Dietzel P. D., Bordiga S., Zecchina A. J. Am. Chem. Soc., 2008, 130(26): 8386.

[13]

Wang Z. Q., Cohen S. M. J. Am. Chem. Soc., 2007, 129(41): 12368.

[14]

Corma A., Garcia H., Xamena F. X. L. Chem. Rev., 2010, 110(8): 4606.

[15]

Bux H., Chmelik C. v, Baten J. M., Krishna R., Caro J. Adv. Mater., 2010, 22(42): 4741.

[16]

Lu Z. Z., Zhang R., Li Y. Z., Guo Z. J., Zheng H. G. J. Am. Chem. Soc., 2011, 133(12): 4172.

[17]

Zheng C. Y., Qiu Q. M., Hao L., Li H. Chem. Res. Chinese Universi-ties, 2016, 32(1): 1.

[18]

Maspoch D., Ruiz-Molina D., Veciana J. Chem. Soc. Rev., 2007, 36(5): 770.

[19]

Li L. M., Wang H. F., Yan X. P. Electrophoresis, 2012, 33(18): 2896.

[20]

Gu Z. Y., Yan X. P. Angew. Chem. Int. Ed., 2010, 49(8): 1477.

[21]

Chang N., Gu Z. Y., Yan X. P. J. Am. Chem. Soc., 2010, 132(39): 13645.

[22]

Chang N., Yan X. P. J. Chromatogr. A, 2012, 1257: 116.

[23]

Gu Z. Y., Jiang J. Q., Yan X. P. Anal. Chem., 2011, 83(13): 5093.

[24]

Fu Y. Y., Yang C. X., Yan X. P. J. Chromatogr. A., 2013, 1274: 137.

[25]

Liu S. S., Yang C. X., Wang S. W., Yan X. P. Analyst, 2012, 137(4): 816.

[26]

Gu Z. Y., Chen Y. J., Jiang J. Q., Yan X. P. Chem. Commun., 2011, 47(16): 4787.

[27]

Yu L. Q., Yan X. P. Chem. Commun., 2013, 49(21): 2142.

[28]

Gu Z. Y., Wang G., Yan X. P. Anal. Chem., 2010, 82(4): 1365.

[29]

Ni Z., Jerrell J. P., Cadwallader K. R., Masel R. I. Anal. Chem., 2007, 79(4): 1290.

[30]

Chen B., Liang C., Yang J., Contreras D. S., Clancy Y. L., Lobkovsky E. B., Dai S. Angew. Chem. Int. Ed., 2006, 118(9): 1418.

[31]

Alaerts L., Kirschhock C. E., Maes M. v d, Veen M. A., Finsy V., Depla A. d, Vos D. E. Angew. Chem. Int. Ed., 2007, 46(23): 4293.

[32]

Xie S. M., Zhang Z. J., Wang Z. Y., Yuan L. M. J. Am. Chem. Soc., 2011, 133(31): 11892.

[33]

Zhang X. H., Xie S. M., Duan A. H., Wang B. J., Yuan L. M. Chromatographia, 2013, 76(13/14): 831.

[34]

Xie S. M., Zhang X. H., Zhang Z. J., Zhang M., Jia J., Yuan L. M. Anal. Bioanal. Chem., 2013, 405(10): 3407.

[35]

Xie S. M., Wang B. J., Zhang X. H., Zhang Z. J., Zhang M., Yuan L. M. Chirality, 2014, 26(1): 27.

[36]

Xie S. M., Zhang X. H., Zhang Z. J., Yuan L. M. Anal. Lett., 2013, 46(5): 753.

[37]

Stylianou K. C., Gómez L., Imaz I., Verdugo-Escamilla C., Ribas X., Maspoch D. Chem. Eur. J., 2015, 21(28): 9964.

[38]

Yamamoto C., Yashima E., Okamoto Y. J. Am. Chem. Soc., 2002, 124(42): 12583.

[39]

Berthed A., Li W., Armstrong D. W. Anal. Chem., 1992, 64(8): 873.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/