PDF
Abstract
In this paper, the effects of solvent mixtures on the morphology, charge transport, and light trapping of poly[N-900-hepta-decanyl-2,7-carbazole-alt-5,5-(40,70-di-2-thienyl-20,10,30-benzothiadiazole)](PCDTBT) and [6,6]- phenyl C71-butyric acid methyl ester(PC71BM) based solar cells were investigated. As a good solvent for PCDTBT, o-dichlorobenzene(ODCB) was selected to mix with chloroform(CF), chlorobenzene(CB), and 1,2,4-Trichlorobenzene(TCB) for optimizing the morphology of the PCDTBT:PC71BM active layer. It can be found that the device performance of polymer solar cells(PSCs) has been greatly improved when using a optimal blend ratio. Especially, the PSCs fabricated via ODCB(90%)/CF(10%, volume fraction) mixture exhibit a remarkable enhancement of photon-to-current efficiency(PCE) from 5.16% to 7.47%. The enhanced performance of the PSCs can be attributed to the higher absorption, the lower resistance, and the optimized surface morphology of the active layers modified by the solvent mixtures.
Keywords
Solvent mixture
/
Phase separation
/
Electron transport
/
Morphology
/
Polymer solar cell
Cite this article
Download citation ▾
Chunxia Zhang, Xu Xu, Panpan Zhang, Yang Dang, Bonan Kang.
Polymer solar cells with improved power conversion efficiency using solvent mixtures.
Chemical Research in Chinese Universities, 2017, 33(3): 466-470 DOI:10.1007/s40242-017-6266-z
| [1] |
Liu C., Hu X., Cao Y., Heeger A. J. Nanoscale, 2014, 6: 14297.
|
| [2] |
Kwon S., Park J. K., Kim H., Lee K. J. Mater. Chem. A, 2015, 3: 7719.
|
| [3] |
Lesoine M. D., Bobbitt J. M., Chaudhary S., Smith E. A. J. Phys. Chem. C, 2014, 118: 30229.
|
| [4] |
Keshtov M. L., Marochkin D. V., Koukaras E. N., Sharma G. D. J. Mater. Chem. A, 2014, 2: 155.
|
| [5] |
Heeger A. J. Adv. Mater., 2014, 26: 10.
|
| [6] |
Chen C. Y., Tsao C. S., Sue W. F., Wang L. Nanoscale, 2013, 5: 7629.
|
| [7] |
O’Regan B. C., Barnes P. R. F., Palomares E., Marin-Beloqui J. M. J. Am. Chem. Soc., 2015, 137: 5087.
|
| [8] |
Liu C., Li J., Shen L., Ruan S. Phys. Chem. Chem. Phys., 2015, 17: 7960.
|
| [9] |
Yu G., Gao J., Wudl F., Heeger A. J. Science, 1995, 270: 15.
|
| [10] |
Li G., Shrotriya V., Yao Y., Yang Y. J. Appl. Phys., 2005, 98: 043704.
|
| [11] |
Sun Y., Takacs C. J., Roy A., Heeger A. J. Adv. Mater., 2011, 23: 2226.
|
| [12] |
Ambade S. B., Ambade R. B., Yoon S. C., Lee S. Nanoscale, 2014, 6: 12130.
|
| [13] |
Wang F., Tan Z., Li Y. Energy Environ. Sci., 2015, 8: 1059.
|
| [14] |
Etxebarria I., Guerrero A., Palomares E., Pacios R. Organic Elec-tronics, 2014, 15: 2756.
|
| [15] |
Kang B., Tan L. W., Silva S. R. P. Appl. Phys. Lett., 2008, 93: 133302.
|
| [16] |
Kang B., Tan L. W., Silva S. R. P. Organic Electronics., 2009, 10: 1178.
|
| [17] |
Vasilopoulou M., Georgiadou D. G., Coutsolelos A. G., Argitis P. J. Mater. Chem. A, 2014, 2: 182.
|
| [18] |
Beaupré S., Leclerc M. J. Mater. Chem. A, 2013, 1: 11097.
|
| [19] |
Tournebize A., Rivaton A., Beaupré S., Leclerc M. Adv. Energy Ma-ter., 2014, 4: 1301530.
|
| [20] |
Ito E., Washizu Y., Yamashita K., Seki K. J. Appl. Phys., 2002, 92: 15.
|
| [21] |
Yu S., Santoro G., Drescher M., Roth S. V. J. Phys. Chem. Lett., 2013, 4: 3170.
|
| [22] |
Song Q. L., Li F.Y., Yang H., Hou X. Y. Chem. Phys. Lett., 2005, 416: 42.
|
| [23] |
Lee J. Y., Lee T., Park H. J., Guo L. J. Organic Electronics, 2014, 15: 2710.
|
| [24] |
Liang Y., Xu Z., Ray C., Yu L. Adv. Mater., 2010, 22: E135.
|
| [25] |
Wu C. G., Chiang C. H., Han H. C. J. Mater. Chem. A, 2014, 2: 5295.
|
| [26] |
Fang G., Liu J., Xie Z., Wang L. Organic Electronics, 2012, 13: 2733.
|
| [27] |
Murugesan V. S., Ono S., Shin P., Ochiai S. Inter. J. Photo., 2015, 694541.
|
| [28] |
Tamilavan V., Kyung H. R., Park S. H., Hyun M. H. J. Mater. Chem. A, 2014, 2: 20126.
|
| [29] |
Yan H., Hollinger J., Al-Faouri T., Seferos D.S. Chem. Mater., 2014, 26: 4605.
|
| [30] |
Kerr M. J., Schmidt J., Cuevas A., Bultman J. H. J. Appl. Phys., 2001, 89: 3821.
|
| [31] |
Park K. H., Dhayal M. Electro. Commun., 2009, 11: 75.
|
| [32] |
Staniec P. A., Parnell A. J., Jones R. A. L., Lidzey D. G. Adv. Energy Mater., 2011, 1: 499.
|
| [33] |
Chu T., Alem S., Tse S. C., Wakim S. Appl. Phys. Lett., 2011, 98: 253301.
|
| [34] |
Lee D. H., Yang Y. M., Richard E., Li G. Nanotechnology, 2014, 25: 295401.
|
| [35] |
Mayukh M., Macech M. R., Armstrong N. R., McGrath D. V. ACS Appl. Mater. Interfaces, 2015, 7: 23912.
|
| [36] |
Guo X., Zhang M., Hou J., Li Y. ACS Appl. Mater. Interfaces, 2014, 6: 8190.
|
| [37] |
Liu J., Liang Q., Xie Z., Wang L. J. Phys. Chem. C, 2014, 118: 4585.
|
| [38] |
Machui F., Brabec C. J. Semiconducting Polymer Composites: Principles, Morphologies Properties and Applications, 2012.
|
| [39] |
Zhang C., Zhang P., Xu X., Kang B. Materials Letters, 2016, 164: 591.
|
| [40] |
Murgatroyd P. N. Science, 1970, 3: 151.
|
| [41] |
Lampert M. A. Phys. Rev., 1956, 103: 1648.
|
| [42] |
Jia T., Han J., Zhou W., Li F., Wang Y. Solar Energy Materials & Solar Cell, 2015, 141: 93.
|
| [43] |
Zhou H., Zhang Y., Nguyen T., Heeger A. J. Adv. Mater., 2013, 25: 1646.
|