Influence of thermal temperature on the structure and sealed micropores of stabilized polyacrylonitrile fibers

Ruixue Zhao , Xudong Zhao , Zhongmin Gao , Xiaoyang Liu , Xiaolei Che

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 312 -317.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (2) : 312 -317. DOI: 10.1007/s40242-017-6262-3
Article

Influence of thermal temperature on the structure and sealed micropores of stabilized polyacrylonitrile fibers

Author information +
History +
PDF

Abstract

Thermal stabilization is an important process in carbon fibers’ production, during which the polyacrylonitrile fibers are heated from 180 °C to 280 °C in air. In this study, the samples were characterized by X-ray diffraction, Fourier infrared spectroscopy, differential scanning calorimetry, small angle X-ray Scattering(SAXS) and mechanical tensile tests. A new rule was suggested by the results of structural characterization for the cyclization, dehydrogenation and oxidation reactions that were observed to be drastic from 200 °C to 220 °C, from 220 °C to 250 °C, and in the later period of the thermal stabilization reactions, respectively. The sizes, shapes and distributions of the sealed micropores were obtained from the SAXS data. The breaking elongation was significantly affected by the drastic cyclization and dehydrogenation reactions. The breaking force was affected considerably by the bigger micropores, especially from 220 °C to 250 °C, owing to the drastic dehydrogenation reactions.

Keywords

Polyacrylonitrile fiber / Thermal stabilization / Micropore

Cite this article

Download citation ▾
Ruixue Zhao, Xudong Zhao, Zhongmin Gao, Xiaoyang Liu, Xiaolei Che. Influence of thermal temperature on the structure and sealed micropores of stabilized polyacrylonitrile fibers. Chemical Research in Chinese Universities, 2017, 33(2): 312-317 DOI:10.1007/s40242-017-6262-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Gao Y., Gao Z. M., Li X. S., Guo J. Q., Wen Y. F., Yang Y. G. Chem. J. Chinese Universities, 2009, 30(10): 2100.

[2]

Mun S. Y., Lim H. M., Lee D. J. Thermochim. Acta, 2015, 600: 62.

[3]

Gao Y., Huang K. K., Hua Z., Gao Z. M., Li X. S. Chem. J. Chinese Universities, 2007, 28(10): 2014.

[4]

He D. X., Wang C. G., Bai Y. J., Lun N., Zhu B., Wang Y. X. J. Ma-ter. Sci, 2006, 42(17): 7402.

[5]

Ozbek S., Isaac D. H. Carbon, 2000, 38: 2007.

[6]

Johnson D. J., Tyson C. N. Br. J. Appl. Phys., 1969, 2(6): 787.

[7]

Bennett S. C., Johnson D. J. Carbon, 1979, 17(1): 25.

[8]

Barnet F. R., Norr M. K. Carbon, 1973, 11(4): 281.

[9]

Wang H. L., Zhao Y., Ma L. K., Fan P. H., Xu C. B., Jiao C. L., Lin A. J. Chem. J. Chinese Universities, 2016, 37(2): 335.

[10]

Wu B., Zheng G., Liu X. Z., Sun Y., Liu H. B., Zhu J. W. Chem. J. Chinese Universities, 2016, 37(10): 1891.

[11]

Chai X. Y., Zhu C. Z., He C. X., Zhang G. Z., Liu J. H. Acta Physi-co-Chimica Sinica, 2014, 30(4): 753.

[12]

Wu S. H., Qin X. H. J. Therm. Anal. Calorim, 2014, 116(1): 303.

[13]

Gupta A. K., Singhal R. P., Maiti A. K., Agarwal V. K. J. Appl. Polym. Sci., 1982, 27: 4101.

[14]

Bhat G. S., Cook F. L., Abhiraman A. S. J. Appl. Polym. Sci., 1990, 28: 377.

[15]

Loidl D., Paris O., Burghammer M., Rieke C., Peterlik H. Phys. Rev. Lett., 2005, 95(22): 225501.

[16]

Xiao H., Lu Y. G., Zhao W. Z. J. Mater. Sci., 2014, 49(2): 794.

[17]

Gupta V. B., Kumar S. J. Appl. Polym. Sci., 1981, 26: 1885.

[18]

Shin H. K., Park M., Kang P. H. J. Ind. Eng. Chem., 2014, 41(9): 6815.

[19]

Astrom J. A., Krasheninnikov A. V., Nordlund K. Phys. Rev. Lett., 2004, 93(21): 215503.

[20]

Ju A. Q., Guang S. Y., Xu H. Y. Carbon, 2013, 54: 323.

[21]

Zhang W. X., Liu J., Wu G. Carbon, 2003, 41(14): 2805.

[22]

Cao F., Zhao L. Chem. J. Chinese Universities, 2011, 32(12): 2711.

[23]

Fu Z. Y., Gui Y., Cao C. L., Liu B. J., Zhou C., Zhang H. X. J. Mater. Sci., 2014, 49(7): 2864.

[24]

Huang Z. F., Wang C. Z., Wei Y. J. Chem. J. Chinese Universities, 2004, 25(6): 1124.

[25]

Shioya M., Takaku A. J. Appl. Phys., 1985, 58(11): 4074.

[26]

Bale H. D., Schmidt P. W. Phys. Rev. Lett., 1984, 53(6): 596.

[27]

Benmore C. J., Izdebski T., Yarger J. L. Phys. Rev. Lett., 2012, 108(17): 178102.

[28]

Kim H. S., Shioya M., Takaku A. J. Mater. Sci., 1999, 34(14): 3307.

[29]

Li W., Long D., Miyawaki J., Qiao W., Ling L., Mochida I., Yoon S. H. J. Mater. Sci., 2012, 47(2): 919.

[30]

Jain M. K., Abhiraman A. S. J. Mater. Sci., 1987, 22(1): 278.

AI Summary AI Mindmap
PDF

145

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/