Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris

Yongqing Li , Ran Xiao , Zonglai Liu , Xiujuan Liang , Wei Feng

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 107 -111.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 107 -111. DOI: 10.1007/s40242-017-6246-3
Article

Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris

Author information +
History +
PDF

Abstract

Cytotoxicity of nickel oxide nanoparticles(NiO NPs) with average diameter of 20 nm were investigated on cultured Chlorella vulgaris. Alga growth-inhibition tests were taken and ultrastructure changes of the microalgae were characterized with transmission electron microscopy(TEM). The biological interface conversion effect between NiO nanoparticles and Chlorella vulgaris were studied by X-ray diffraction(XRD), high-resolution transmission electron microscopy(HRTEM) and X-ray photoelectron spectroscopy(XPS). The results indicated that the NiO nanoparticles had severe inhibitory effect on the growth of microalgae, with a 96 h EC50 value of 31.4 mg/L. Under the exposure to NiO NPs suspensions, Chlorella vulgaris cells showed plasmolysis with a shriveled cell shape, disrupted plasma mem-brane, leaked cytosol and disordered thylakoid grana lamella. The NiO NPs were aggregated and partially reduced to Ni0 inside the Chlorella vulgaris. The bioaccumulation and bio-reduction ability of Chlorella vulgaris provide us with a possible strategy of remediation of aquatic pollution conducted by toxic metal oxide nanoparticles.

Keywords

Chlorella vulgaris / Nanoparticles / Cytotoxicity / Conversion

Cite this article

Download citation ▾
Yongqing Li, Ran Xiao, Zonglai Liu, Xiujuan Liang, Wei Feng. Cytotoxicity of NiO nanoparticles and its conversion inside Chlorella vulgaris. Chemical Research in Chinese Universities, 2017, 33(1): 107-111 DOI:10.1007/s40242-017-6246-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Nath D., Banerjee P. Environ. Toxicol. Pharmacol., 2013, 36(3): 997.

[2]

Zhang W. Y., Wang Z. X., Shen Y., Xi M. Y., Chu X. B., Xi C. Y. Chem. Res. Chinese Universities, 2015, 31(6): 1007.

[3]

Xu W. W., Okamoto T., Li A. W., Wang J. P., Haraguchi M. Chem. Res. Chinese Universities, 2016, 32(3): 428.

[4]

Ma X. Y., Yang J. M., Cai W. S., Zhu G. D., Liu J. Y. Chem. Res. Chinese Universities, 2016, 32(4): 702.

[5]

Cui Q. H., Zhang Y. L., Peng Z. Q. Chem. Res. Chinese Universities, 2016, 32(1): 106.

[6]

Fairbrother A., Fairbrother J. R. Ecotox. Environ. Safe., 2009, 72(5): 1327.

[7]

Bhuvaneshwari B., Sasmal S., Iyer N. R. Proceedings of the 4th WSEAS International Conference on Recent Researches in Geography, Geology, Energy, Environment and Biomedicine (GEMESED’11), 2011, 230.

[8]

Kong M., Keidar M., Ostrikov K. J. Phys. D: Appl. Phys., 2011, 44(17): 174018.

[9]

Chen A., Chatterjee S. Chem. Soc. Rev., 2013, 42(12): 5425.

[10]

Zhao F., Zhao Y., Wang C. J. Clean Prod., 2008, 16(8): 1000.

[11]

Coles D., Frewer L. Trends Food Sci. Tech., 2013, 34(1): 32.

[12]

Feng J., Hou X. Y., Chen T. T., Liu S. N., Fan Z. J., Ren Y. M., Y. Z. Chem. Res. Chinese Universities, 2015, 31(5): 885.

[13]

Jiao Q. Z., Wang Y. F., Hao L., Li H. S., Zhao Y. Chem. Res. Chinese Universities, 2016, 32(4): 678.

[14]

Ju-Nam Y., Lead J. R. Sci. Total Environ., 2008, 400(1): 396.

[15]

Glenn J. C. Technol. Forecasting Social Change, 2006, 73(2): 128.

[16]

Miazek K., Iwanek W., Remacle C., Richel A., Goffin D. Int. J. Mol. Sci., 2015, 16(10): 23929.

[17]

Wang D., Liu X. M., Fang Z. X., Li J., Sun M. J. Chem. Res. Chinese Universities, 2015, 31(4): 581.

[18]

Qu X., Alvarez P. J., Li Q. Water Res., 2013, 47(12): 3931.

[19]

Yao D., Chen Z., Zhao K., Yang Q., Zhang W. Procedia Environ. Sci., 2013, 18: 149.

[20]

Fabrega J., Zhang R., Renshaw J. C., Liu W. T., Lead J. R. Chemosphere, 2011, 85(6): 961.

[21]

Gu Y., Qiao X., Zhang J., Sun Y. Y., Tao Y. M., Qiao S. X. Chem. Res. Chinese Universities, 2016, 32(3): 474.

[22]

Hu C., Li M., Cui Y., Li D., Chen J., Yang L. Soil Biol. Biochem., 2010, 42(4): 586.

[23]

Li L. Z., Zhou D. M., Peijnenburg W. J., van Gestel C. A., Jin S. Y., Wang Y. J., Wang P. Environ. Int., 2011, 37(6): 1098.

[24]

Matranga V., Corsi I. Mar. Environ. Res., 2012, 76: 32.

[25]

Fabrega J., Luoma S. N., Tyler C. R., Galloway T. S., Lead J. R. Environ. Int., 2011, 37(2): 517.

[26]

Zhuang W., Gao X. CLEAN-Soil, Air, Water, 2014, 42(4): 377.

[27]

Garner K. L., Keller A. A. J. Nanopart. Res., 2014, 16(8): 1.

[28]

Gong N., Shao K., Feng W., Lin Z., Liang C., Sun Y. Chemosphere, 2011, 83(4): 510.

[29]

Aslani A., Oroojpour V., Fallahi M. Appl. Surf. Sci., 2011, 257(9): 4056.

[30]

Li Y. X., Feng W., Gong N., Sun Y. Q., Xiong D. Q., Mar. Environ. Sci, 28(2), 151

[31]

Zhou C., Vitiello V., Casals E., Puntes V., Iamunno F., Pellegrini D., Changwen W., Benvenuto G., Buttino I. Aquat. Toxicol., 2016, 170: 1.

[32]

Martínez-Ruiz E. B., Martínez-Jerónimo F. Aquat. Toxicol., 2015, 169: 27.

[33]

Lim S. L., Chu W. L., Phang S. M. Bioresour. Technol., 2010, 101(19): 7314.

[34]

Zhang W., Xiong B., Chen L., Lin K., Cui X., Bi H., Guo M., Wang W. Environ. Toxicol. Pharmacol., 2013, 36(1): 51.

[35]

Guo G. S., Zheng D. H., Wang Z. H., Lu J. H., Guo H. Y. J. Beijing Univ. Chem. Tech.(Natur. Sci.), 2004, 31(3): 74.

[36]

Baltazar M. T., Dinis-Oliveira R. J., Martins A., de Lourdes Bastos M., Duarte J. A., Guilhermino L., Carvalho F. Aquat. Toxicol., 2014, 146: 137.

[37]

Li Z., Guo S., Li L., Cai M. J. South China Univ. Tech. (Natur. Sci.), 1998, 26(2): 33.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/