Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems

Xuehui An , Peng Zhang , Jinhui Cheng , Shuanglin Chen , Jianqiang Wang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 122 -128.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 122 -128. DOI: 10.1007/s40242-017-6137-7
Article

Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems

Author information +
History +
PDF

Abstract

Phase equilibria and thermodynamic properties of the CsNO3-KNO3-NaNO3 system and its three subsys-tems were optimized thermodynamically and validated experimentally. The liquid and end solid solution phases of the KNO3-NaNO3 and CsNO3-KNO3 systems were modeled using the substitutional solution and compound energy formalism models, respectively. The CsNO3-KNO3-NaNO3 ternary system was described thermodynamically based on the self-consistent thermodynamic parameters of the three binary systems. A set of thermodynamic parameters was obtained to reproduce the available information on the thermodynamic properties and phase equilibria. Melting temperature, enthalpy, and specific heat capacity of a eutectic sample were determined using differential scanning calorimetry(DSC). The results show a good consistency with the calculated results, suggesting the reliability of the current thermodynamic database. This work is useful for the construction of multicomponent nitrates and to provide guidance for the development of new medium for thermal energy storage.

Keywords

Thermal energy storage / Nitrate / Calphad / Phase diagram

Cite this article

Download citation ▾
Xuehui An, Peng Zhang, Jinhui Cheng, Shuanglin Chen, Jianqiang Wang. Thermodynamic reevaluation and experimental validation of the CsNO3-KNO3-NaNO3 system and its subsystems. Chemical Research in Chinese Universities, 2017, 33(1): 122-128 DOI:10.1007/s40242-017-6137-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Reddy R. G., Fluxes and Salts(Molten 12), The Chinese Society for Metals, Beijing, 2012, 1

[2]

Coscia K., Oztekin A., Mohapatra S., Neti S., Nelle S., Elliot T., Proceedings of the ASME 2012 Summer Heat Transfer Conference, Rio Grande, Puerto Rico, 2012, 1

[3]

Mendeleva S. V., Storonkin A. V., Vasil’kova I. V., Kozhina I. I. Vestn. Leningrad Univ., Ser. Fiz. Khim., 1973, 1: 167.

[4]

Jriri T., Rogez J., Mathieu J. C., Ansara I. J. Phase Equilib., 1999, 20(5): 515.

[5]

Saunders N., Miodownik A. CALPHAD(Calculation of Phase Dia-grams): a Comprehensive Guide, 1998, Elsevier Science Ltd.: Oxford, 1.

[6]

Yin H. Q., Wang K., Xie L. D., Han H., Wang W. F. Chem. Res. Chinese Universities, 2015, 31(3): 461.

[7]

Yin H. Q., Wang K., Liu W. G., Xie L. D., Han H., Wang W. F. Chem. J. Chinese Universities, 2014, 35(12): 2668.

[8]

Bergman A. G., Vaksberg N. M. Izv. Akad. Nauk SSSR Otd. Mat. Est. Nauk, 1937, 1: 71.

[9]

Bergman A. G., Berul S. I. Izvest. SektoraFiz.——Khim. Anal., Inst. Obshch. Neorg. Khim. Akad. Nauk SSSR, 1952, 21: 178.

[10]

Kramer C. M., Wilson C. J. Thermochim. Acta, 1980, 42: 253.

[11]

Klement W. J. Inorg. Nucl. Chem, 1974, 36: 1916.

[12]

Ping W., Harrowell P., Byrne N., Angell C. A. Thermochim. Acta, 2009, 486: 27.

[13]

Kleppa O. J. J. Chem. Phys, 1960, 64: 1937.

[14]

Greis O., Bahamdan K. M., Uwais B. M., Thermochim. Acta, 1985, 86, 343

[15]

Zamali H., Jemal M., J. Therm. Anal., 1994, 41, 1091

[16]

Robelin C., Chartrand P., Pelton A. D. J. Chem. Thermodynamics, 2015, 83: 12.

[17]

Zhang X. J., Tian J., Xu K. C., Gao Y. C. J. Phase Equilib., 2003, 24(5): 441.

[18]

Benes O., Konings R. J. M., Wurzer S., Sierig M., Dockendorf A. Thermochim. Acta, 2010, 509: 62.

[19]

Sangster J. J. Phase Equilib, 2000, 21(3): 241.

[20]

Bolshakov K. A., Pokrovskii B. I., Plyushev V. E. TR: Russ. J. Inor-ganic Chem., 1961, 6: 1083.

[21]

Khvostova I. P., Efimov A. I., Susarev H. P. J. Appl. Chem. USSR., 1974, 47(5): 1175.

[22]

Nurminskii N. N., Diogenov G. G. Z. Neorg. Khim., 1960, 5(9): 2084.

[23]

Panieva L. A., Gabitova L. L., Protsenko P. I. Russ. J. Inorganic-Chem., 1968, 13(10): 1449.

[24]

Kirgintsev A. N., Aloi A. S., Kosyakov V. I. Radiokhimiya, 1971, 13(5): 665.

[25]

Kleppa O. J., Hersh L. S. J. Chem. Phys., 1961, 34(2): 351.

[26]

Storonkin A.V., Vasil’kova I. V., Mendeleva S. Russ. J. Phys. Chem., 1973, 47(8): 1141.

[27]

Jriri T., Gilbert M., Rogez J., Mathieu J. C. Ann. Chim. Fr., 1994, 19: 121.

[28]

Cingolani A., Berchesi M. A., Piantoni G., Lecresi D. Z. Naturforsch. A, 1972, 27: 159.

[29]

Protsenko A. B., Protsenko P. I., Eremina N. N. Zh. Neorg. Khim., 1971, 16(7): 2009.

[30]

ASTM E 1269-11, Standard Test Method for Determining Specific Heat Capacity by Differential Scanning Calorimetry

[31]

Serrano-López R., Fradera J. Cuesta-LópezS., Chem. Eng. Process., 2013, 73: 87.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/