Preparation of ZnO/Ag heterostructure material by one-pot method for enhanced photocatalytic performance

Weimin Guo , Haiting Liu

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 129 -134.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 129 -134. DOI: 10.1007/s40242-017-6098-x
Article

Preparation of ZnO/Ag heterostructure material by one-pot method for enhanced photocatalytic performance

Author information +
History +
PDF

Abstract

A porous ZnO/Ag heterostructure photocatalyst was prepared by a simple one-pot method. The photoca-talytic degradation of ammonia and dye indicated that compared with pure ZnO, the photocatalytic activity of ZnO/Ag was significantly improved after Ag modification. The main reason for the improvement of photocatalytic activity is that the recombination process of photoinduced electrons and holes of ZnO was inhibited by interconver-sion of Ag+ and Ag0 at the surface of ZnO. In addition, the effective separation of the photogenerated carriers can generate more active groups, which can promote the degradation of ammonia and organic dyes.

Keywords

ZnO/Ag / Heterostructure / Photocatalysis / Ammonia degradation

Cite this article

Download citation ▾
Weimin Guo, Haiting Liu. Preparation of ZnO/Ag heterostructure material by one-pot method for enhanced photocatalytic performance. Chemical Research in Chinese Universities, 2017, 33(1): 129-134 DOI:10.1007/s40242-017-6098-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Crossland E. J. W., Noel N., Sivaram V., Leijtens T., Alexander-Webber J. A., Smith H. J. Nature, 2013, 495: 215.

[2]

Liu Y. J., Zhou F., Zhan S., Yang Y. F., Yin Y. F. Chem. Res. Chinese Universities, 2016, 32(2): 284.

[3]

Bu Y., Chen Z., Li W. Dalton Trans., 2013, 42: 16272.

[4]

Zhang L., Jing D., She X., Liu H., Yang D., Lu Y., Li J., Zheng Z., Guo L. J. Mater. Chem. A, 2014, 2: 2071.

[5]

Yu J., Zhang C. K., Zhuang J., Qin H. Y., He Q. G., Liang Q. M. Chem. Res. Chinese Universities, 2015, 31(3): 412.

[6]

Pan H., Misra N., Ko S. H., Grigoropoulos C. P., Miller N., Haller E. E., Dubon O. Applied Physics A, 2009, 94: 111.

[7]

Xu T., Zhang L., Cheng H., Zhu Y. Appl. Catal. B, 2011, 101: 382.

[8]

Sang H. X., Wang X. T., Fan C. C. Inter. J. Hydro. Energy, 2012, 37: 1348.

[9]

Song H., Zhu L., Li Y., Lou Z., Xiao M., Ye Z. J. Mater. Chem. A, 2015, 3: 8353.

[10]

Fageria P., Gangopadhyay S., Pande S. RSC Adv., 2014, 4: 24962.

[11]

Qian W., Geng B., Wang S. Environ. Sci. Tech., 2009, 43: 8968.

[12]

Li P., Wei Z., Wu T., Peng Q., Li Y. J. Am. Chem. Soc., 2001, 133: 5660.

[13]

Zheng Y., Zheng L., Zhan Y., Lin X., Zheng Q., Wei K. Inorganic Chem., 2007, 46: 6980.

[14]

Lu W., Gao S., Wang J. J. Phys. Chem. C, 2008, 112: 16792.

[15]

Chang Y., Xu J., Zhang Y., Ma S., Xin L., Zhu L., Xu C. J. Phys. Chem. C, 2009, 113: 18761.

[16]

Platzer-Björkman C., Lu J., Kessler J., Stolt L. Thin Solid Films, 2003, 431: 321.

[17]

Zeng H., Cai W., Liu P., Xu X., Zhou H., Klingshirn C., Kalt H. ACS Nano, 2008, 2: 1661.

[18]

Randall D. J., Tsui T. K. N. Mar. Pollut. Bull., 2002, 45: 17.

[19]

Shu Y., Wang H. C., Zhu J. W., Zhang F. Chem. Res. Chinese Universities, 2014, 30(6): 1005.

[20]

Peng Y., Qin S. C., Wang W. S., Xu A. W. Cryst. Eng. Comm., 2013, 15: 6518.

[21]

Wang H., Su Y., Zhao H., Yu H., Chen S., Zhang Y., Quan X. Environ. Sci. Technol., 2014, 48: 11984.

[22]

Feng N. D., Wang Q., Zheng A., Zhang Z. F., Fan J., Liu S. B., Amoureux J. P., Deng F. J. Am. Chem. Soc., 2013, 135: 1607.

[23]

Kang S. F., Fang Y., Huang Y. K., Cui L. F., Wang Y. Z., Qin H. F., Zhang Y. M., Li X., Wang Y. G. Appl. Catal. B, 2015, 168: 472.

[24]

Jing L., Qu Y., Wang B., Li S., Jiang B., Yang L., Fu W., Fu H., Sun J. Solar Energy Mater. Solar Cells, 2006, 90: 1773.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/