Interfacial self-assembly approach of plasmonic nanostructures for efficient SERS and recyclable catalysts applications

Pengzhen Guo , Xiqiang Huang , Lifang Li , Sheng Zhao

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 135 -142.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 135 -142. DOI: 10.1007/s40242-017-6034-0
Article

Interfacial self-assembly approach of plasmonic nanostructures for efficient SERS and recyclable catalysts applications

Author information +
History +
PDF

Abstract

We report on a simple and general interfacial self-assembly approach to fabricate plasmonic superlattice sheets in extremely large scale, which can be up to ca. 50 cm2, based on different types of noble metal nanoparticles. The self-assembled nanofilms exhibit exciting plasmonic properties with mirror-like reflectance, represented by vivid colour changes. More important, such superlattice sheets can be easily transferred and explored as highly efficient Shape-dependent Surface Enhanced Raman Scattering(SERS) substrates, as well as flexible and recyclable shape-dependent substrate-supporting nanocatalysts sheets. The conversion of 4-NPH were kept as high as 95% after the nanocatalyst sheets were used for six cycles. The interfacial self-assembly method can be exploited for develop-ment of optical and nanocatalysts devices such as flexible colour filters, molecular sensors and flexible plasmonic nanofilms.

Keywords

Plasmonic / Interfacial self-assembly / Surface Enhanced Raman Scattering(SERS) / Recyclable nanocata-lysts / Noble nanoparticles

Cite this article

Download citation ▾
Pengzhen Guo, Xiqiang Huang, Lifang Li, Sheng Zhao. Interfacial self-assembly approach of plasmonic nanostructures for efficient SERS and recyclable catalysts applications. Chemical Research in Chinese Universities, 2017, 33(1): 135-142 DOI:10.1007/s40242-017-6034-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xu L., Ma W., Wang L., Xu C., Kuang H., Kotov N. A. Chem. Soc. Rev., 2013, 42(7): 3114.

[2]

Zhan C. H., Cheng R. M., Fang B. B., Zhao L. J. Chem. Res. Chi-nese Universities, 2016, 32(2): 159.

[3]

Rao X. Y., Zhang J. J., Cui J., Hu Y., Liu T., Chai J. F., Cheng G. F., He P. G., Fang Y. Z. Chem. Res. Chinese Universities, 2013, 29(5): 868.

[4]

Gong J., Li G., Tang Z. Nano Today, 2012, 7(6): 564.

[5]

Tan S. J., Campolongo M. J., Luo D., Cheng W. Nat. Nanotechnol., 2011, 6(5): 268.

[6]

Jain P. K., El-Sayed M. A. Chem. Phys. Lett., 2010, 487(4-6): 153.

[7]

Fan J. A., Wu C., Bao K., Bao J., Bardhan R., Halas N. J., Manoha-ran V. N., Nordlandera P., Shvets G., Capasso F. Science, 2010, 328(5982): 1135.

[8]

Xia H., Wang D. Adv. Mater., 2008, 20(22): 4253.

[9]

Wang H., Brandl D. W., Nordlander P., Halas N. J. Acc. Chem. Res., 2007, 40(1): 53.

[10]

Nie Z., Fava D., Kumacheva E., Zou S., Walker G. C., Rubinstein M. Nat. Mater., 2007, 6(8): 609.

[11]

Mueggenburg K. E., Lin X. M., Goldsmith R. H., Jaeger H. M. Nat. Mater., 2007, 6(9): 656.

[12]

Jain P. K., Huang X., El-Sayed I. H., El-Sayed M. A. Acc. Chem. Res., 2008, 41(12): 1578.

[13]

Tao A., Sinsermsuksamul P., Yang P. Nat. Nanotechnol., 2007, 2(7): 435.

[14]

Ng K. C., Udagedara I. B., Rukhlenko I. D., Chen Y., Tang Y., Pre-maratne M., Cheng W. ACS Nano, 2011, 6(1): 925.

[15]

Chen Y., Fu J., Ng K. C., Tang Y., Cheng W. Cryst. Growth Des., 2011, 11(11): 4742.

[16]

Kim H. Y., Lee M., Park K. J., Kim S., Mahadevan L. Nano Lett., 2010, 10(6): 2138.

[17]

Ahniyaz A., Sakamoto Y., Bergstr M. L. Proc. Natl. Acad. Sci., 2007, 104(45): 17570.

[18]

Nie Z., Petukhova A., Kumacheva E. Nat. Nanotechnol., 2010, 5(1): 15.

[19]

Edel J. B., Kornyshev A. A., Urbakh M. ACS Nano, 2013, 7(11): 9526.

[20]

Hu L., Chen M., Fang X., Wu L. Chem. Soc. Rev., 2012, 41(3): 1350.

[21]

Boker A., He J., Emrick T., Russell T. P. Soft Matter, 2007, 3(10): 1231.

[22]

Lin Y., Skaff H., Emrick T., Dinsmore A. D., Russell T. P. Science, 2003, 299(5604): 226.

[23]

Xiao F., Song J., Gao H., Zan X., Xu R., Duan H. ACS Nano, 2012, 6(1): 100.

[24]

Nakanishi H., Bishop K. J. M., Kowalczyk B., Nitzan A., Weiss E. A., Tretiakov K. V., Apodcac M. M., Klajn R., Stoddart J. F., Grzybows-ki B. A. Nature, 2009, 460(7253): 371.

[25]

Guo P., Sikdar D., Huang X., Si K. J., Su B., Chen Y., Xiong W., Yap L. W., Premaratne M., Cheng W. J. Phys. Chem. C, 2014, 118(46): 26816.

[26]

Millyard M. G., Minhuang F., White R., Spigone E., Kivioja J., Baumberg J. J. Appl. Phys. Lett., 2012, 100(7): 073101.

[27]

Yen Y. T., Lu T. Y., Lee Y. C., Yu C. C., Tsai Y. C., Tseng Y. C., Chen H. L. ACS Appl. Mater. Interfaces, 2014, 6(6): 4292.

[28]

Kang H., Heo C. J., Jeon H. C., Lee S. Y., Yang S. M. ACS Appl. Mater. Interfaces, 2013, 5(11): 4569.

[29]

Fang P. P., Chen S., Deng H., Scanlon M. D., Gumy F., Lee H. J., Momotenko D., Amstutz V., Cort S-Salazar F., Pereira C. M., Yang Z., Girault H. H. ACS Nano, 2013, 7(10): 9241.

[30]

Turek V. A., Cecchini M. P., Paget J., Kucernak A. R., Kornyshev A. A., Edel J. B. ACS Nano, 2012, 6(9): 7789.

[31]

Cheng L., Liu A., Peng S., Duan H. ACS Nano, 2010, 4(10): 6098.

[32]

Liu J. W., Zhang S. Y., Qi H., Wen W. C., Yu S. H. Small, 2012, 8(15): 2412.

[33]

Reincke F., Hickey S. G., Kegel W. K., Vanmaekelbergh D. Angew. Chem. Int. Ed., 2004, 43(4): 458.

[34]

Duan H., Wang D., Kurth D. G., Mhwald H. Angew. Chem. Int. Ed., 2004, 43(42): 5639.

[35]

Kim K., Han H. S., Choi I., Lee C., Hong S., Suh S. H., Lee L. P., Kang T. Nat. Commun., 2013, 4(1): 1.

[36]

Ma Y., Li W., Cho E. C., Li Z., Yu T., Zeng J., Xie Z., Xia Y. ACS Nano, 2010, 4(11): 6725.

[37]

Jiang R., Chen H., Shao L., Li Q., Wang J. Adv. Mater., 2012, 24(35): OP200.

[38]

Ali M. S., Suhail M., Ghosh G., Kamil M. Colloids Surf., A, 2009, 350(1): 51.

[39]

Park Y. K., Park S. Chem. Mater., 2008, 20(6): 2388.

[40]

Park Y. K., Yoo S. H., Park S. Langmuir, 2007, 23(21): 10505.

[41]

Uetsuki K., Verma P., Yano T. A., Saito Y., Ichimura T., Kawata S. J. Phys. Chem. C, 2010, 114(16): 7515.

[42]

Stiles P. L., Dieringer J. A., Shah N. C., van Duyne R. P. Annu. Rev. Anal. Chem., 2008, 1(1): 601.

[43]

Campion A., Kambhampati P. Chem. Soc. Rev., 1998, 27: 241.

[44]

Kim K., Yoon J. K. J. Phys. Chem. B, 2005, 109(44): 20731.

[45]

Cortie M. B., Mcdonagh A. M. Chem. Rev., 2011, 111(6): 3713.

[46]

Guo P., Sikdar D., Huang X., Si K. J., Xiong W., Gong S., Yap L. W., Premaratne M., Cheng W. Nanoscale, 2015, 7(7): 2862.

[47]

Zhou J., Duan B., Fang Z., Song J., Wang C., Messersmith P. B., Duan H. Adv. Mater., 2014, 26(5): 701.

[48]

Pradhan N., Pal A., Pal T. Langmuir, 2001, 17(5): 1800.

[49]

Zhang X., Su Z. Adv. Mater., 2012, 24(33): 4574.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/