Studies on triterpenoid glycosides from rhizomes of Panacis majoris and their antiplatelet aggregation activity

Min Li , Yongri Jin , Xiaozhong Wang , Qian Wu , Ying Liu , Peng Li , Xuwen Li

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 943 -946.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 943 -946. DOI: 10.1007/s40242-016-6285-0
Article

Studies on triterpenoid glycosides from rhizomes of Panacis majoris and their antiplatelet aggregation activity

Author information +
History +
PDF

Abstract

A new triterpenoid glycoside(1) and seven known triterpenoid glycosides, pseudoginsenoside RT2(2), yesanchinoside R2(3), vinaginsenoside R13(4), vinaginsenoside R8(5), notoginsenoside E(6), 6′′′-O-acetylginsenoside Re(7), 6″-O-acetylginsenoside Rb1(8), were isolated from the rhizomes of Panacis majoris. The new triterpenoid glycoside was elucidated as 3-O-[β-D-glucopyranosyl-(1→2)-β-D-(6′-O-ethyl)-glucuronopyranosyl]-oleanolic acid-28-O-β-D-glucopyranoside by extensive spectroscopic and phytochemical methods. Compounds 28 were obtained from the plant for the first time. Compounds 3 and 4 displayed good activities against adenosine diphosphate (ADP)-induced platelet aggregation, and compounds 1, 5, 6 and 8 showed moderate activities. Compound 6 exhibited moderate antiplatelet aggregation activity induced by arachidonic acid(AA).

Keywords

Panacis majoris / Rhizome / Triterpenoid glycoside / Antiplatelet aggregation

Cite this article

Download citation ▾
Min Li, Yongri Jin, Xiaozhong Wang, Qian Wu, Ying Liu, Peng Li, Xuwen Li. Studies on triterpenoid glycosides from rhizomes of Panacis majoris and their antiplatelet aggregation activity. Chemical Research in Chinese Universities, 2016, 32(6): 943-946 DOI:10.1007/s40242-016-6285-0

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lee J. H., Lee J. H., Lee Y. M., Kim P. N., Jeong C. S. Food Chem. Toxicol., 2008, 46(12): 3749.

[2]

Li Q. F., Shi S. L., Liu Q. R., Tang J., Song J., Liang Y. Int. J. Bio-chem. Cell. Bio., 2008, 40(9): 1918.

[3]

Eun K. P., Min K. C., Yung J. H. M., Dong H. K. Int. Arch. Allergy. Immunol., 2004, 133(2): 113.

[4]

Zhang G. Z., Liu A. L., Zhou Y. B., San X., Jin T. W., Jin Y. J. Eth-nopharmacol., 2008, 115(3): 441.

[5]

Park E. K., Choo M. K., Kim E. J., Han M. J., Kim D. H. Biol. Pharm. Bull., 2003, 26(11): 1581.

[6]

Kim K., Kim H. Y. J. Ethnopharmacol., 2008, 120(2): 190.

[7]

Zhao H., Shi L., Cao J. Q., Li W., Wen X., Zhao Y. Q. Chinese Chem. Lett., 2010, 21(10): 1216.

[8]

Shi X. L., Wang J. F., Yao H., Zhang P. X., Li X. W., Zhang H. Y., Jin Y. R. Chem. J. Chinese Universities, 2013, 34(2): 381.

[9]

Born G. Nature, 1962, 194: 927.

[10]

Marouf A., Desbene S., Khanh T. C., Wagner H., Correia M., Chauf-fert B., Dubois M. A. L. Pharm. Biol., 2001, 39: 263.

[11]

Tanaka O., Morita T., Kasai R., Kinouchi J., Sanada S., Ida Y., Shoji J. Chem. Pharm. Bull., 1985, 33(6): 2323.

[12]

Zhou M., Xu M., Wang D., Zhu H. T., Yang C. R., Zhang Y. J. Helv. Chim. Acta, 2011, 94(11): 2010.

[13]

Duc N. M., Kasai R., Ohtani K., Ito A., Nham N. T., Yamasaki K., Tanaka O. Chem. Pharm. Bull., 1994, 42(3): 634.

[14]

Duc N. M., Kasai R., Ohtani K., Ito A., Nham N. T., Yamasaki K., Tanaka O. Chem. Pharm. Bull., 1994, 42(1): 115.

[15]

Yoshikawa M., Murakami T., Ueno T., Hirokawa N., Yashiro K., Murakami N. Chem. Pharm. Bull., 1997, 45(6): 1056.

[16]

Samimi R., Xu W., Lui E. M. K., Charpentier P. Planta Med., 2014, 80(6): 509.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/