Determination of cysteine using near-infrared diffuse reflectance spectroscopy with enrichment via thiol-maleimide click reaction

Cuicui Wang , Wensheng Cai , Xueguang Shao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 912 -916.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 912 -916. DOI: 10.1007/s40242-016-6279-z
Article

Determination of cysteine using near-infrared diffuse reflectance spectroscopy with enrichment via thiol-maleimide click reaction

Author information +
History +
PDF

Abstract

Enrichment technique has been proved to be an efficient way to make the near-infrared diffuse reflectance spectroscopy(NIRDRS) suitable for micro analysis. However, low selectivity presented by conventional enrichment methods makes the quantitative analysis easy to be affected by the coexisting components. In this study, a specific enrichment method with chemical bonding via thiol-maleimide click reaction was used to achieve the reduction of the interferences. Taking cysteine as the analyzing target, maleimide-functionalized SiO2 nanoparticles were prepared for the enrichment of cysteine. Then determination of cysteine in aqueous solution and human serum was studied using the partial least squares model built from the NIRDRS spectra of the adsorbate. The results show that the concentration that can be quantitatively detected is as low as 2.0 μg/mL, and the correlation coefficient(R) between the reference and predicted concentration is 0.9871 for the validation samples. The recoveries are in the range of 89.5%―113.8% for human serum samples in the concentration range of 0―16.2 μg/mL.

Keywords

Near-infrared diffuse reflectance spectroscopy / Click reaction / Cysteine / Multivariate calibration / Human serum

Cite this article

Download citation ▾
Cuicui Wang, Wensheng Cai, Xueguang Shao. Determination of cysteine using near-infrared diffuse reflectance spectroscopy with enrichment via thiol-maleimide click reaction. Chemical Research in Chinese Universities, 2016, 32(6): 912-916 DOI:10.1007/s40242-016-6279-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Blanco M., Villarroya I. TrAC, Trends Anal. Chem., 2002, 21: 240.

[2]

Ding X. X., Guo Y., Ni Y. N., Kokot S. Vib. Spectrosc., 2016, 82: 1.

[3]

Shan H. Y., Fei Y. Q., Huan Y. F., Feng G. D., Fei Q. Chem. Res. Chinese Universities, 2014, 30(4): 582.

[4]

Rantanen J., Wikstrm H., Turner R., Taylor L. S. Anal. Chem., 2005, 77: 556.

[5]

Moros J., Garrigues S., de la Guardia M. TrAC, Trends Anal. Chem., 2010, 29: 578.

[6]

Shao X. G., Ning Y., Liu F. X., Li J. H., Cai W. S. Acta Chim. Sinica, 2012, 70: 2109.

[7]

Blanco M., Castillo M., Peinado A., Beneyto R. Anal. Chim. Acta, 2007, 581: 318.

[8]

Albuquerque J. S., Pimentel M. F., Silva V. L., Raimundo I. M., Rohwedder J. J. R., Pasquini C. Anal. Chem., 2005, 77: 72.

[9]

Zhang X., Du Y. P., Tong P. J., Li W., Iqbal J., Wu T., Hu H. L., Zhang W. B. Chemom. Intell. Lab. Syst., 2014, 134: 58.

[10]

Liu Y., Ning Y., Cai W. S., Shao X. G. Analyst, 2013, 138: 6617.

[11]

Chen G. P., Mei Y., Tao W., Zhang C., Tang H. R., Iqbal J., Du Y. P. Anal. Chim. Acta, 2010, 670: 39.

[12]

Huang Z. X., Tao W., Fang J. J., Wei X. M., Du Y. P. Chemom. Intell. Lab. Syst., 2009, 98: 195.

[13]

Ning Y., Li J. H., Cai W. S., Shao X. G. Spectrochim. Acta A, 2012, 96: 289.

[14]

Li J. H., Zhang Y., Cai W. S., Shao X. G. Talanta, 2011, 84: 679.

[15]

Liu F. X., Cai W. S., Shao X. G. Vib. Spectrosc., 2013, 68: 104.

[16]

Hao Y., Cai W. S., Shao X. G. Spectrochim. Acta A, 2009, 72: 115.

[17]

Zhang Y., Hao Y., Cai W. S., Shao X. G. Anal. Methods, 2011, 3: 703.

[18]

Yang Y. F., Tu J. R., Cai W. S., Shao X. G. Talanta, 2012, 99: 871.

[19]

Nair D. P., Podgórski M., Chatani S., Gong T., Xi W. X., Fenoli C. R., Bowman C. N. Chem. Mater., 2014, 26: 724.

[20]

Pounder R. J., Stanford M. J., Brooke P., Richards S. P., Dove A. P. Chem. Commun., 2008, 41: 5158.

[21]

Chen D., Hu B., Shao X. G., Su Q. D. Anal. Bioanal. Chem., 2005, 381: 795.

[22]

Reinikainen S. P., Hoskuldsson A. Anal. Chim. Acta, 2007, 595: 248.

[23]

Olga N., Nathan S. L., Richard G. C. Talanta, 2003, 60: 1085.

[24]

Liu L. J., Zhuo R. X. Ion Exchange Adsorpt., 1995, 11: 541.

[25]

Gao G. Z., Lange D., Hilpert K., Kindrachuk J., Zou Y. Q., Cheng J. T. J., Kazemzadeh-Narbat M., Yu K., Wang R. Z., Straus S. K., Brooks D. E., Chew B. H., Hancock R. E. W., Kizhakkedathu J. N. Biomaterials, 2011, 32: 3899.

[26]

Malley D. F., Williams P. C. Environ. Sci. Technol., 1997, 31: 3461.

[27]

Forouzangohar M., Cozzolino D., Kookana R. S., Smernik R. J., Forrester S. T., Chittleborough D. J. Environ. Sci. Technol., 2009, 43: 4049.

[28]

Wold S. Technometrics, 1978, 20: 397.

[29]

Koehler P. J. Agric. Food. Chem., 2003, 51: 4948.

[30]

Barnes R. J., Dhanoa M. S., Lister S. J. Appl. Spectrosc., 1989, 43: 772.

[31]

Geladi P., MacDougall D., Martens H. Appl. Spectrosc., 1985, 39: 491.

[32]

Shao X. G., Leung A. K. M., Chau F. T. Acc. Chem. Res., 2003, 36: 276.

AI Summary AI Mindmap
PDF

175

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/