Tunable synthesis of core-shell α-Fe2O3/TiO2 composite nanoparticles and their visible-light photocatalytic activity

Dandan Sun , Yanyan Cao , Yanyan Xu , Guoying Zhang , Yaqiu Sun

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 882 -888.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 882 -888. DOI: 10.1007/s40242-016-6252-x
Article

Tunable synthesis of core-shell α-Fe2O3/TiO2 composite nanoparticles and their visible-light photocatalytic activity

Author information +
History +
PDF

Abstract

Uniform α-Fe2O3/amorphous TiO2 core-shell nanocomposites were prepared via a hydrolysis method and α-Fe2O3/anatase TiO2 core-shell nanocomposites were obtained via a post-calcination process. The structure and morphology of the products were characterized by powder X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy and scanning electron microscopy. Amorphous TiO2 nanoparticles with diameters of ten to several tens nanometer were formed on the surface of α-Fe2O3 nanoparticles and the coverage density of the secondary TiO2 nanoparticles in the composite can be controlled by varying the concentration of Ti(BuO)4 in the ethanol solution. The visible-light photocatalytic properties of different products towards Rhodamine B(RhB) were investigated. The results show that the α-Fe2O3/amorphous TiO2 exhibits a good photocatalytic property owing to the extension of the light response range to visible light and the efficient separation of photogenerated electrons and holes between α-Fe2O3 and amorphous TiO2.

Keywords

α-Fe2O3/TiO2 / Core-shell nanostructure / Photocatalytic activity / Rhodamine B

Cite this article

Download citation ▾
Dandan Sun, Yanyan Cao, Yanyan Xu, Guoying Zhang, Yaqiu Sun. Tunable synthesis of core-shell α-Fe2O3/TiO2 composite nanoparticles and their visible-light photocatalytic activity. Chemical Research in Chinese Universities, 2016, 32(6): 882-888 DOI:10.1007/s40242-016-6252-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen C., Ma W., Zhao J. Chem. Soc. Rev., 2010, 39: 4206.

[2]

Khin M. M., Nair A. S., Babu V. J., Murugan R., Ramakrishna S. Energy Environ. Sci., 2012, 5: 8075.

[3]

Hisatomi T., Kubota J., Domen K. Chem. Soc. Rev., 2014, 43: 7520.

[4]

Schneider J., Matsuoka M., Takeuchi M., Zhang J., Horiuchi Y., Anpo M., Bahnemann D. W. Chem. Rev., 2014, 114: 9919.

[5]

Mishra M., Chun D. M. Appl. Catal. A: Gen., 2015, 498: 126.

[6]

Rajeshwar K., Tacconi N. R., Chenthamarakshan C. R. Chem. Mater., 2001, 13: 2765.

[7]

Dong S., Feng J., Fan M., Pi Y., Hu L., Han X., Liu M., Sun J., Sun J. RSC Adv., 2015, 5: 14610.

[8]

Wu W., Jiang C., Roy V.A.L. Nano Scale, 2015, 7: 38.

[9]

Wang H., Liu N., Lu J., Yao S., Jiang S., Zhang W. Chem. Res. Chinese Universities, 2015, 31(5): 846.

[10]

Ma J., Wang K., Li L., Zhang T., Kong Y., Komarneni S. Ceram. Int., 2015, 41: 2050.

[11]

Xu Z., Huang C., Wang L., Pan X., Qin L., Guo X., Zhang G. Ind. Eng. Chem. Res., 2015, 54: 4593.

[12]

Wheeler D. A., Wang G., Ling Y., Li Y., Zhang J. Z. Energy Environ. Sci., 2012, 5: 6682.

[13]

Jain G., Balasubramanian M., Xu J. Chem. Mater., 2006, 18: 423.

[14]

Chen J., Xu L. N., Li W. Y., Gou X. L. Adv. Mater., 2005, 17: 582.

[15]

Zhou X., Lan J., Liu G., Deng K., Yang Y., Nie G., Yu J., Zhi L. Angew. Chem. Int. Ed., 2012, 51: 178.

[16]

Jagadeesan D., Mansoori U., Mandal P., Sundaresan A., Eswara-moorthy M. Angew. Chem. Int. Ed., 2008, 47: 7685.

[17]

Liu X., Liu J., Chang Z., Luo L., Lei X., Sun X. RSC Adv., 2013, 3: 8489.

[18]

Yu J., Yu X., Huang B., Zhang X., Dai Y. Cryst. Growth Des., 2009, 9: 1474.

[19]

Zhou X., Yang H., Wang C., Mao X., Wang Y., Yang Y., Liu G. J. Phys. Chem. C, 2010, 114: 17051.

[20]

Liu G., Deng Q., Wang H., Ng D. H. L., Kong M., Cai W., Wang G. J. Mater. Chem., 2012, 22: 9704.

[21]

Zhu S., Yao F., Yin C., Li Y., Peng W., Ma J., Zhang D. Microporous Mesoporous Mater., 2014, 190: 10.

[22]

Wu W., Zhang S., Xiao X., Zhou J., Ren F., Sun L., Jiang C. ACS Appl. Mater. Interfaces, 2012, 4: 3602.

[23]

Liu J., Yang S., Wu W., Tian Q., Cui S., Dai Z., Ren F., Xiao X., Jiang C. ACS Sustainable Chem. Eng., 2015, 3: 2975.

[24]

Wu W., Zhang S., Ren F., Xiao X., Zhou J., Jiang C. Nanoscale, 2011, 3: 4676.

[25]

Shi Y., Li H., Wang L., Shen W., Chen H. ACS Appl. Mater. Interfaces, 2012, 4: 4800.

[26]

Pan J., Li X., Zhao Q., Zhang D. RSC Adv., 2015, 5: 51308.

[27]

Wang X., Yang W., Li F., Zhao J., Liu R., Liu S., Li B. J. Hazard. Mater., 2015, 292: 126.

[28]

Li W. B., Feng C., Yue J. G., Hua F. X., Bu Y. Y. Chem. J. Chinese Universities, 2015, 36(6): 1194.

[29]

Ohtani B., Ogawa Y., Nishimoto S. J. Phys. Chem. B, 1997, 101: 3746.

[30]

Wang Q., Chen M., Zhu N., Shi X., Jin H., Zhang Y., Cong Y. J. Colloid Interface Sci., 2015, 448: 407.

[31]

Lee S., Lee K., Kim W. D., Lee S., Shin D. J., Lee D. C. J. Phys. Chem. C, 2014, 118: 23627.

[32]

Wang C. J., Kwon K. W., Odlyzko M. L., Lee B. H., Shim M. J. Phys. Chem. C, 2007, 111: 11734.

[33]

Tian X., Li S., Cao Y., Xu Y., Zhang G. Mater. Lett., 2014, 131: 86.

[34]

Yang S., Xu Y., Sun Y., Zhang G., Gao D. Cryst. Eng. Comm., 2012, 14: 7915.

[35]

Amarjargal A., Jiang Z., Tijing L. D., Park C. H., Im I. T., Kim C. S. J. Alloys Compd., 2013, 580: 143.

[36]

Wu W., Zhang S., Xiao X., Zhou J., Ren F., Sun L., Jiang C. ACS Appl. Mater. Interfaces, 2012, 4: 3602.

[37]

Zang L., Lange C., Abraham I., Storck S., Maier W. F., Kisch H. J. Phys. Chem. B, 1998, 102: 10765.

[38]

Wei X. X., Cui H. T., Guo S. Q., Zhao L. F., Li W. J. Hazard. Mater., 2013, 263: 650.

AI Summary AI Mindmap
PDF

125

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/