Preparation of functionalized Fe3O4@SiO2 magnetic nanoparticles for monoclonal antibody purification

Xuemei Hou , Changjie Zhao , Yanlong Tian , Shuliang Dou , Xiang Zhang , Jiupeng Zhao

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 889 -894.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 889 -894. DOI: 10.1007/s40242-016-6251-y
Article

Preparation of functionalized Fe3O4@SiO2 magnetic nanoparticles for monoclonal antibody purification

Author information +
History +
PDF

Abstract

Magnetic Fe3O4@SiO2 nanoparticles with superparamagnetic properties were prepared via a reverse microemulsion method at room temperature. The as-prepared samples were characterized by transmission electron microscopy(TEM), X-ray diffractometry(XRD), and vibrating sample magnetometry(VSM). The Fe3O4@SiO2 nanopar-ticles were modified by (3-aminopropyl)triethoxysilane(APTES) and subsequently activated by glutaraldehyde(Glu). Protein A was successfully immobilized covalently onto the Glu activated Fe3O4@SiO2 nanoparticles. The adsorption capacity of the nanoparticles was determined on an ultraviolet spectrophotometer(UV) and approximately up to 203 mg/g of protein A could be uniformly immobilized onto the modified Fe3O4@SiO2 magnetic beads. The core-shell of the Fe3O4@SiO2 magnetic beads decorated with protein A showed a good binding capacity for the chimeric anti-EGFR monoclonal antibody(anti-EGFR mAb). The purity of the anti-EGFR mAb was analyzed by virtue of HPLC. The protein A immobilized affinity beads provided a purity of about 95.4%.

Keywords

Magnetic / Fe3O4@SiO2 / Protein A / Nanoparticle / Monoclonal antibody

Cite this article

Download citation ▾
Xuemei Hou, Changjie Zhao, Yanlong Tian, Shuliang Dou, Xiang Zhang, Jiupeng Zhao. Preparation of functionalized Fe3O4@SiO2 magnetic nanoparticles for monoclonal antibody purification. Chemical Research in Chinese Universities, 2016, 32(6): 889-894 DOI:10.1007/s40242-016-6251-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Lin S. Z., Chen H. H., Li Y. H., Jia R. K. Chem. J. Chinese Universi-ties, 2014, 36(12): 2529.

[2]

Cao W., Ma Y. R., Zhou W., Guo L. Chem. Res. Chinese Universities, 2015, 31(4): 508.

[3]

Ovejero J. G., Bran C., Morales M. P., Vazquez M., Vi-lanova E., Kosel J. Journal of Magnetism and Magnetic Materials, 2015, 389(1): 144.

[4]

Li G., Wang L., Li W., Xu Y. Microporous and Mesoporous Mate-rials, 2015, 211(15): 97.

[5]

Chen X. B., Liao D. Z., Sun Y. F., Hu X. J., Yang Y., Zhu S. J. Chem. J. Chinese Universities, 2005, 26(1): 78.

[6]

Gao J., Ran X., Shi C., Cheng H., Cheng T., Su Y. Nanoscale, 2013, 5(15): 7026.

[7]

Veiseh O., Gunn J. W., Zhang M. Advanced Drug Delivery Reviews, 2010, 62(3): 284.

[8]

Wang W., Jing Y., He S. H., Wang J. P., Zhai J. P. Colloids Surface B: Biointerfaces, 2014, 117(1): 449.

[9]

Sedlacik M., Moucka R., Kozakova Z., Kazantseva N. E., Pavlinek V., Kuritka I., Kaman O., Peer P. Journal of Magnetism and Mag-netic Materials, 2013, 326(1): 7.

[10]

Kaushik A., Khan R., Solanki P. R., Pandey P., Alam J., Ahmad S., Malhotra B. D. Biosensors & Bioelectronics, 2008, 24(4): 676.

[11]

Cui Y., Hong C., Zhou Y., Li Y., Gao X., Zhang X. Talanta, 2011, 85(3): 1246.

[12]

Hou X. M., Xu H. B., Pan L., Tian Y. L., Zhang X. RSC Advances, 2015, 126(5): 103760.

[13]

Shao M. F., Ning F. Y., Zhao J. W., Wei M., Evans D. G., Duan X. Journal of the American Chemical Society, 2012, 134(2): 1071.

[14]

Ji T. H., Lirtsman V. G., Avny Y., Davidov D. Advanced Materials, 2001, 13(16): 1253.

[15]

Cakmak S., Gumusderelioglu M., Denizli A. Reactive & Functional Polymers, 2009, 68(8): 586.

[16]

Li T., Han X., Wang Y. L., Wang F., Shi D. L. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2015, 477(20): 84.

[17]

Kohler G., Milstein C. Nature, 1975, 256(5517): 495.

[18]

Goldstein N. I., Prewett M., Zuklys K., Rockwell P., Mendelsohn J. Clinical Cancer Research, 1995, 1(117): 1311.

[19]

Kim E. S., Khuri F. R., Herbst R. S. Current Medical Research and Opinion, 2001, 13(6): 506.

[20]

Gill G. N., Kawamoto T., Cochet C., Le A., Sato J. D., Masui H., McLeod C., Mendelsohn J. Journal of Biological Chemistry, 1984, 259(12): 7755.

[21]

Speziale P., Pietrocola G., Rindi S., Provenzano M., Provenza G., di Poto A., Visai L., Arciola C. R. Future Microbiology, 2009, 4(10): 1337.

[22]

Cao Y., Tian W., Gao S. Y., Yu Y. S., Yang W. B., Bai G. Artificial Cells Blood Substitutes & Biotechnology, 2007, 35(5): 467.

[23]

Holschuh K., Schwammle A. Journal of Magnetism and Magnetic Materials, 2005, 293(1): 345.

[24]

Bailey L. J., Sheehy K. M., Hoey R. J., Schaefer Z. P., Ura M., Kos-siakoff A. A. Journal of Immunological Methods, 2014, 415(24): 24.

[25]

Choudary B. M., Kantam M. L., Rahman A., Reddy C. V., Rao K. K. Angewandte Chemie International Edition, 2001, 40(4): 763.

[26]

Jain P., Sun L., Dai J., Baker G. L., Bruening M. L. Biomacromole-cules, 2007, 8(10): 3102.

[27]

Clairbois A. S., Letourneur D., Muller D., Jozefonvicz J. Journal of Chromatography B, 1998, 706(1): 55.

[28]

Wang Y., Wang G., Xiao Y., Yang Y., Tang R. ACS Applied Materials & Interfaces, 2014, 6(21): 19092.

[29]

Xuan S. H., Wang F., Gong X. L., Kong S. K., Yu J. C., Leung K. C. F. Chemical Communications, 2011, 47(9): 2514.

[30]

Pan D., Zhang H., Fan T., Chen J., Duan X. Chemical Communica-tions, 2011, 47(3): 908.

[31]

Park J., An K., Hwang Y., Park J. G., Noh H. J., Kim J. Y., Park J. H., Hwang N. M., Hyeon T. Nature Materials, 2004, 3(12): 891.

[32]

Ding H. L., Zhang Y. X., Wang S., Xu J. M., Xu S. C., Li G. H. Chemistry of Materials, 2012, 24(23): 4572.

[33]

Yang P. P., Quan Z. W., Hou Z. Y., Li C. X., Kang X. J., Cheng Z. Y., Lin J. Biomaterials, 2009, 30(27): 4786.

[34]

Lin Y., Xu G. H., We F. D., Zhang A. X., Yang J., Hu Q. Journal of Pharmaceutical and Biomedical Analysis, 2016, 121(3): 135.

AI Summary AI Mindmap
PDF

111

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/