Improved energy conversion efficiency of ZnO/polythiophene solar cell in Ga-doped ZnO nanorod array photoanode

Jie Wu , Huanhuan Liu , Long Yuan , Changmin Hou

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 979 -984.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 979 -984. DOI: 10.1007/s40242-016-6195-2
Article

Improved energy conversion efficiency of ZnO/polythiophene solar cell in Ga-doped ZnO nanorod array photoanode

Author information +
History +
PDF

Abstract

We reported the fabrication and doping effect of Ga-doped ZnO nanorods/electropolymerized polythio-phene(e-PT) hybrid photovoltaic(h-PV) devices. Ga-Doped ZnO nanorod array photoanode devices were fabricated via hydrothermally growing nanorods on sol-gel spin-coating ZnO seed layer, and then the nanorod array was im-mersed into a thiophene solution to yield a thin polythiophene film by electrochemically polymerization. Afterwards, a thin layer of Al was deposited on the surface of polythiophene to make an electrode for photovoltaic measurement. The ZnO nanorods with different Ga-doping contents were characterized by means of X-ray diffraction(XRD), scan-ning electron micrograph(SEM) and X-ray photoelectron spectroscopy(XPS). Photovoltaic J-V characterization was performed on the e-PT/ZnO bilayer and bulk heterojunction(BHJ) devices. Though the unsubstituted polythiophene is not an ideal polymer material for solar cells with high power conversion efficiency, it is a sound model for the study on the effect of dopant in hybrid materials. The results indicate that doping Ga can substantially improve the power conversion efficiency of the ZnO-polythiophene solar cell.

Keywords

Solar cell / Energy conversion / Ga-Doped ZnO

Cite this article

Download citation ▾
Jie Wu, Huanhuan Liu, Long Yuan, Changmin Hou. Improved energy conversion efficiency of ZnO/polythiophene solar cell in Ga-doped ZnO nanorod array photoanode. Chemical Research in Chinese Universities, 2016, 32(6): 979-984 DOI:10.1007/s40242-016-6195-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Smalley R. E. MRS Bull., 2005, 30: 412.

[2]

Huang K., Chu X., Yuan L., Feng W., Wu X., Wang X., Feng S. Chem. Commun., 2014, 50: 9200.

[3]

Zhou C., Huang K., Yuan L., Feng W., Chu X., Geng Z., Wu X., Wang L., Feng S. New J. Chem., 2015, 39: 2413.

[4]

Liu Y., Li G., Yuan L., Ge L., Ding H., Wang D., Zou X. Nanoscale, 2015, 7: 3130.

[5]

Wang X., Wu X., Yuan L., Zhou C., Wang Y., Huang K., Feng S. Solar Energy and Solar Cells, 2016, 146: 99.

[6]

O’Regan B., Grätzel M. Nature, 1991, 353: 737.

[7]

Brabec C. J., Hauch J. A., Schilinsky P., Waldauf C. MRS Bull., 2005, 30: 50.

[8]

Zhu Z., Qiu J., Yan K., Yang S. ACS Appl. Mater. & Inter., 2013, 5: 4000.

[9]

Ravirajan P., Bradley D. D. C., Nelson J., Haque S. A., Durrant J. R., Smit H. J. P., Kroon J. M. Appl. Phys. Lett., 2005, 86: 143101.

[10]

Li C., Bai T., Li F., Wang L., Wu X., Yuan L., Shi Z., Feng S. CrystEngComm, 2013, 15: 597.

[11]

Mohamed H. A. J. Appl. Phys., 2013, 113: 093105.

[12]

Hames Y., Alpaslan Z., Semen A., San S., Yerli Y. Solar Energy, 2010, 84: 426.

[13]

Durkop T., Getty S. A., Cobas E., Fuhrer M. S. Nano Lett., 2004, 4: 35.

[14]

Yuan L., Yu J., Wang S., Huang K., Ren X., Sun Y., Wu X., Feng S. Mater. Lett., 2015, 143: 212.

[15]

Ameen S., Shaheer Akhtar M., Seo H., Kima Y. S., Shin H. S. Chem. Eng. J., 2012, 187: 351.

[16]

Huang K., Hou C., Gao Z., Li X., Feng S., Zhang Y., Zhu H., Du G. Chem. Res. Chinese Universities, 2006, 22(6): 692.

[17]

Hou C., Huang K., Gao Z., Li X., Feng S., Zhang Y., Du G. Chem. Res. Chinese Universities, 2006, 22(5): 552.

[18]

Hou C., Huang K., Gao Z., Li X., Feng S., Zhang Y., Zhu H., Du G. Chem. Res. Chinese Universities, 2007, 23(1): 1.

[19]

Yuan L., Huang K., Hou C., Feng W., Wang S., Zhou C., Feng S. New J. Chem., 2014, 38: 1168.

[20]

Liu X., Hou C., Yuan L., Liu S., Qin Y., Huang K., Feng S. Chem. J. Chinese Universities, 2013, 34(2): 277.

[21]

Feng W., Wan A. S., Garfunkel E. J. Phys. Chem. C, 2013, 117: 9852.

[22]

Yamabi S., Imai H. J. Mater. Chem., 2002, 12: 3773.

[23]

Tsai E. W., Basak S., Ruiz J. P., Reynolds J. R., Rajeshwar K. J. Electrochem. Soc., 1989, 136: 3683.

[24]

Bhosle V., Tiwari A., Narayan J. J. Appl. Phys., 2006, 100: 033713.

[25]

Yuan G., Zhang W., Jie J., Fan X., Tang J., Shafiq I., Ye Z., Lee C., Lee S. Adv. Mater., 2008, 20: 168.

[26]

Mott N. F. Candian J. Phys., 1956, 34: 1356.

AI Summary AI Mindmap
PDF

122

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/