Collision dynamics of an energetic carbon ion impinging on the stone-wales defect in a single-walled carbon nanotube

Chao Zhang , Fei Mao , Xiangrui Meng , Chengling Pan , Shaoding Sheng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 803 -807.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 803 -807. DOI: 10.1007/s40242-016-6179-2
Article

Collision dynamics of an energetic carbon ion impinging on the stone-wales defect in a single-walled carbon nanotube

Author information +
History +
PDF

Abstract

By employing atomistic simulations based on an empirical potential model and a self-consistent-charge density-functional tight-binding method, the collision dynamics process of an energetic carbon ion impinging on the Stone-Wales defect in a single-walled carbon nanotube was investigated. The outwardly and inwardly displacement threshold energies for the primary knock-on atom in the Stone-Wales defect were calculated to be 24.0 and 25.0 eV, respectively. The final defect configuration for each case was a 5-1DB-T(DB=dangling bond) defect formed in the front surface of the nanotube. Moreover, the minimum incident energy of the projectile prompting the primary knock-on atom displacement was predicted to be 71.0 eV, and the time evolutions of the kinetic and potential energies of the projectile and the primary knock-on atom were both plotted to analyze the energy transfer process.

Keywords

Carbon nanotube / Collision dynamics / Stone-Wales defect

Cite this article

Download citation ▾
Chao Zhang, Fei Mao, Xiangrui Meng, Chengling Pan, Shaoding Sheng. Collision dynamics of an energetic carbon ion impinging on the stone-wales defect in a single-walled carbon nanotube. Chemical Research in Chinese Universities, 2016, 32(5): 803-807 DOI:10.1007/s40242-016-6179-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Krasheninnikov A. V., Nordlund K. J. Appl. Phys., 2010, 107: 071301.

[2]

Katoh Y., Ozawa K., Shih C., Nozawa T., Shinavski R. J., Hasegawa A., Snead L. L. J. Nucl. Mater., 2014, 448: 448.

[3]

Åhlgren E. H., Kotakoski J., Lehtinen O., Krasheninnikov A. V. Appl. Phys. Lett., 2012, 100: 233108.

[4]

Chen F. D., Tang X. B., Yang Y. H., Huang H., Liu J., Chen D. Nucl. Instrum. Methods Phys. Res. B, 2015, 358: 88.

[5]

Zhang R., Li H., Zhang Z. D., Wang Z. S., Zhou S. Y., Wang Z., Li T. C., Liu J. R., Fu D. J. Nucl. Instrum. Methods Phys. Res. B, 2015, 356/357: 99.

[6]

Zhang Y., Ishimaru M., Varga T., Oda T., Hardiman C., Xue H. Z., Katoh Y., Shannone S., Weber W. J. Phys. Chem. Chem. Phys., 2012, 14: 13429.

[7]

Backman M., Toulemonde M., Pakarinen O. H., Juslin N., Djurabekova F., Nordlund K., Debelle A., Weber W. J. Comput. Mater. Sci., 2013, 67: 261.

[8]

Iijima S. Nature, 1991, 354: 56.

[9]

Liu L. L., Zhao D. X., Yang Z. Z. Chem. Res. Chinese Universities, 2015, 31(5): 878.

[10]

Hulman M., Skákalová V., Krasheninnikov A. V., Roth S. Appl. Phys. Lett., 2009, 94: 071907.

[11]

Karbunar L., Borka D., Radovic I., Miškovic Z. L. Nucl. Instrum. Methods Phys. Res. B, 2015, 358: 82.

[12]

Tolvanen A., Buchs G., Ruffieux P., Gröning P., Gröing O., Krasheninnikov A. V. Phys. Rev. B, 2009, 79: 125430.

[13]

Holmström E., Toikka L., Krasheninnikov A. V., Nordlund K. Phys. Rev. B, 2010, 82: 045420.

[14]

Zhao S. J., Xue J. M., Wang Y. G., Yan S. Appl. Phys. A, 2012, 12: 6955.

[15]

Stone A. J., Wales D. J. Chem. Phys. Lett., 1986, 128: 501.

[16]

Li P. Chem. Res. Chinese Universities, 2014, 30(6): 1032.

[17]

Plimpton S. J. Comput. Phys., 1995, 117: 1.

[18]

Stuart S. J., Tutein A. B., Harrison J. A. J. Chem. Phys., 2000, 112: 6472.

[19]

Ziegler J. F., Biersack J. P., Littmark U. The Stopping and Range of Ions in Matter, New York, 1985, 21.

[20]

Xu Z. J., Zhang W., Zhu Z. Y., Huai P. Nanotechnology, 2009, 20: 125706.

[21]

Zhang C., Mao F., Zhang F. S., Zhang Y. Chem. Phys. Lett., 2012, 541: 92.

[22]

Zhang C., Mao F., Zhang F. S. Eur. Phys. J. Appl. Phys., 2013, 64: 10401.

[23]

Åhlgren E. H., Kotakoski J., Krasheninnikov A. V. Phys. Rev. B, 2011, 83: 115424.

[24]

Lehtinen O., Kotakoski J., Krasheninnikov A. V., Tolvanen A., Nordlund K., Keinonen J. Phys. Rev. B, 2010, 81: 153401.

[25]

Kotakoski J., Krasheninnikov A. V., Ma Y., Foster A. S., Nordlund K., Nieminen R. M. Phys. Rev. B, 2005, 71: 205408.

[26]

Humphrey W., Dalke A., Schulten K. J. Mol. Graphics, 1996, 14: 33.

[27]

Elstner M., Porezag D., Jungnickel G., Elsner J., Haugk M., Frauenheim Th., Suhai S., Seifert G. Phys. Rev. B, 1998, 58: 7260.

[28]

Jakowski J., Irle S., Morokuma K. Phys. Rev. B, 2010, 82: 125443.

[29]

Zhang D. B., Seifert G., Chang K. Phys. Rev. Lett., 2014, 112: 096805.

[30]

Krasheninnikov A. V., Banhart F., Li J. X., Foster A. S., Nieminen R. M. Phys. Rev. B, 2005, 72: 125428.

[31]

Kotakoski J., Krasheninnikov A. V., Nordlund K. Phys. Rev. B, 2006, 74: 245420.

[32]

Lu A. J., Pan B. C. Phys. Rev. Lett., 2004, 92: 105504.

AI Summary AI Mindmap
PDF

136

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/