Characterization of a chiral low molecular weight gelator in gel state using various circular dichroism methods

Huayan Sun , Jiaming Qin , Yi Li , Baozong Li , Yonggang Yang

Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 119 -121.

PDF
Chemical Research in Chinese Universities ›› 2017, Vol. 33 ›› Issue (1) : 119 -121. DOI: 10.1007/s40242-016-6168-5
Article

Characterization of a chiral low molecular weight gelator in gel state using various circular dichroism methods

Author information +
History +
PDF

Abstract

Circular dichroism(CD) is usually used to study supramolecular chirality. With the development of CD methods, diffuse transmission CD(DTCD) and diffuse reflectance CD(DRCD) have been developed. However, the relationship among CD, DTCD and DRCD has not been well-studied. A chiral low molecular weight gelator was synthesized, which can result in a transparent physical gel in deionized water. The field-emission electron microscopy images show that the gel is able to self-assemble into left-handed helical fibers. The CD and DTCD spectra are almost identical, but they partially differ from the DRCD spectrum. Based on the TD-DFT calculated CD spectrum, the DRCD spectrum is shown to be more accurate.

Keywords

Optical activity / Circular dichroism / Self-assembly

Cite this article

Download citation ▾
Huayan Sun, Jiaming Qin, Yi Li, Baozong Li, Yonggang Yang. Characterization of a chiral low molecular weight gelator in gel state using various circular dichroism methods. Chemical Research in Chinese Universities, 2017, 33(1): 119-121 DOI:10.1007/s40242-016-6168-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Menzel C., Helgert C., Rockstuhl C., Kley E. B., Tünnermann A., Pertsch T., Lederer F. Phys. Rev. Lett., 2010, 104(25): 253902.

[2]

Feringa B. L. Science, 2001, 292(5524): 2021.

[3]

Canfield B. K., Kujala S., Laiho K., Jefimovs K., Vallius T., Turunen J., Kauranen M. J. Nonlinear Optic. Phys. Mat., 2006, 15(1): 43.

[4]

Hembury G. A., Borovkov V. V., Inoue Y. Chem. Rev., 2008, 108(1): 1.

[5]

Avalos M., Babiano R., Cintas P., Jiménez J. L., Palacios J. C. Chem. Commun., 2000, 11: 887.

[6]

Berova N., Nakanishi K., Woody R. W. Circular Dichroism: Principles and Applications, 2000, Weinheim: Wiley-VCH, 29.

[7]

Stephens P. J. J. Phys. Chem., 1985, 89(5): 748.

[8]

Barron L. D., Bogaard M. P., Buckingham A. D. J. Am. Chem. Soc., 1973, 95(2): 603.

[9]

Steinberg I. Z. Methods Enzymol, 1978, 49: 179.

[10]

Bilotti I., Biscarini P., Castiglioni E., Ferranti F., Furoda R. Chirality, 2002, 14: 750.

[11]

Castiglioni E., Biscarini P., Abbate S. Chirality, 2009, 21: E28.

[12]

Asano N., Harada T., Sato T., Tajima N., Kuroda R. Chem. Commun., 2009, 8: 899.

[13]

Górecki M. Chirality, 2015, 27: 441.

[14]

Yang Z., Liang G., Wang L., Xu B. J. Am. Chem. Soc., 2006, 128(9): 3038.

[15]

Shen Z., Wang T., Liu M. Angew. Chem. Int. Ed., 2014, 53(49): 13424.

[16]

Rodríguez-Llansola F., Miravet J. F., Escuder B. Chem. Eur. J., 2010, 16(28): 8480.

[17]

Wu X., Ji S., Li Y., Li B., Zhu X., Hanabusa K., Yang Y. J. Am. Chem. Soc., 2009, 131(16): 5986.

[18]

Zhang C., Wang S., Huo H., Huang Z., Li Y., Li B., Yang Y. Chem. Asian J., 2013, 8(4): 709.

[19]

Suzuki M., Owa S., Yumoto M., Kimura M., Shirai H., Hanabusa K. Tetrahedron Lett., 2004, 45(28): 5399.

[20]

Fu Y., Li B., Huang Z., Li Y., Yang Y. Langmuir, 2013, 29(20): 6013.

[21]

Chen H., Li Y., Tang X., Li B., Zhang C., Yang Y. RSC Adv., 2015, 5(50): 39946.

AI Summary AI Mindmap
PDF

99

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/