Cetyltrimethylammonium bromide(CTAB)-ionic liquid composite modified electrode for sensitive cyclic voltammetric determination of bisphenol A

Lihong Liu , Chunfeng Wang , Kelei Zhuo

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 992 -995.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 992 -995. DOI: 10.1007/s40242-016-6162-y
Article

Cetyltrimethylammonium bromide(CTAB)-ionic liquid composite modified electrode for sensitive cyclic voltammetric determination of bisphenol A

Author information +
History +
PDF

Abstract

A sensitive electrochemical sensor for determining bisphenol A(BPA) was designed. The sensor was a glassy carbon electrode modified with the surfactant cetyltrimethylammonium bromide and the ionic liquid 1-decyl-3-methylimidazolium tetrafluoroborate. The ability of the new sensor to measure BPA was investigated in cyclic voltammetry experiments. Under optimized conditions, the sensor gave a linear response range for BPA of 2.19×10−7―3.28×10−5 mol/L and a detection limit of 7.31×10−8 mol/L(S/N=3). BPA could be determined with a lower detection limit, a wider linear range, and more sensitivity using the sensor than using other electrochemical sensors or high performance liquid chromatography with UV detection. The new sensor was used to determine BPA in tap water with recoveries of 97.5%―98.7% and a relative standard deviation <2.9%. The results show that the sensor can be used to determine trace BPA concentrations in tap water.

Keywords

Bisphenol A / Ionic liquid / Surfactant / Electrochemical sensor

Cite this article

Download citation ▾
Lihong Liu, Chunfeng Wang, Kelei Zhuo. Cetyltrimethylammonium bromide(CTAB)-ionic liquid composite modified electrode for sensitive cyclic voltammetric determination of bisphenol A. Chemical Research in Chinese Universities, 2016, 32(6): 992-995 DOI:10.1007/s40242-016-6162-y

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim W. B., Joshi U. A., Lee J. S. Ind. Eng. Chem. Res., 2004, 43: 1897.

[2]

Sajiki J., Yonekubo J. Chemosphere, 2004, 55: 861.

[3]

Le H. H., Carlson E. M., Chua J. P., Belcher S. M. Toxicol. Lett., 2008, 176: 149.

[4]

Sajiki J., Yonekubo J. Chemosphere, 2003, 51: 55.

[5]

Kang H. Y., Wang X. L., Zhang Y., Wu J. F., Wang H. Q. RSC Adv., 2015, 5: 14631.

[6]

Soto A. M., Sonnenschein C. Nat. Rev. Endocrinol, 2010, 6: 363.

[7]

Rubin B. S. J. Steroid Biochem., 2011, 127: 27.

[8]

Takahashi O., Oishi S. Environ. Health Persp., 2000, 108: 931.

[9]

Eddington A. N., Ritter L. Environ. Health Persp., 2009, 117: 645.

[10]

Fan Z. L., Hu J. M., An W., Yang M. Environ. Sci. Technol., 2013, 47: 10841.

[11]

Sambe H., Hosoya K., Haginaka J. Analyst, 2005, 130: 38.

[12]

Kuroda N., Kinoshita Y., Sun Y. J. Pharm. Biomed. Anal., 2003, 30: 1743.

[13]

Ouchi K., Watanabe S. J. Chromatogr. B, 2002, 780: 365.

[14]

Zhang J., Cooke G. M., Curran I. H. A., Goodyer C. G., Cao X. J. Chromatogr. B, 2011, 879: 209.

[15]

Zhao M., Li Y., Guo Z., Zhang X., Chang W. Talanta, 2002, 57: 1205.

[16]

Yin H., Zhou Y., Ai S., Han R., Tang T., Zhu L. Microchim. Acta, 2010, 170: 99.

[17]

Yin H., Cui L., Ai S., Fan H., Zhu L. Electrochim. Acta, 2010, 55: 603.

[18]

Mita D. G., Attanasio A., Arduini F., Diano N., Grano V., Bencivenga U., Rossi S., Amine A., Moscone D. Biosens. Bioelectron., 2007, 23: 60.

[19]

Suffredini H. B., Pedrosa V. A., Codognoto L., Machado S. A. S., Rochafilho R. C., Avaca L. A. Electrochim. Acta, 2004, 49: 4021.

[20]

Ahmad Rather J., De Wael K. Sensor. Actuat. B: Chem., 2013, 176: 110.

[21]

Fan H. X., Li Y., Wu D., Ma H. M., Mao K. X., Fan D. W., Du B., Li H., Qin W. Anal. Chim. Acta, 2012, 711: 24.

[22]

Yu C. M., Gou L. L., Zhou X. H., Bao N., Gu H. Y. Electrochim. Acta, 2011, 56: 9056.

[23]

Wang X., Zeng H. L., Wei Y. L., Lin J. M. Sensor. Actuat. B: Chem., 2006, 114: 565.

[24]

Gao Y., Cao Y., Yang D., Luo X., Tang Y., Li H. J. Hazard. Ma-ter., 2012, 199: 111.

[25]

Plechkova N. V., Seddon K. R. Chem. Soc. Rev., 2008, 37: 123.

[26]

Wasserscheid P., Keim W. Angew. Chem. Int. Ed., 2000, 39: 3772.

[27]

Zhao C., Bond A. M., Compton R. G., O’Mahony A. M., Rogers E. I. Anal. Chem., 2010, 82: 3856.

[28]

Wei D., Wakeham S. J., Ng T. W., Thwaites M. J., Brown H., Beecher P. Electrochem. Comm., 2009, 11: 2285.

[29]

Wang Q. X., Wang Y. H., Liu S. Y., Wang L. H., Gao F., Gao F., Sun W. Thin Solid Films, 2012, 520: 4459.

[30]

Yu X. W., Chen Y. K., Chang L. P., Zhou L., Tang F. X., Wu X. P. Sensor. Actuat. B: Chem., 2013, 186: 648.

[31]

Andreescu S., Sadik O. A. Anal. Chem., 2004, 76: 552.

[32]

Yin H. S., Zhou Y. L., Xu J., Ai S. Y., Cui L., Zhu L. S. Anal. Chim. Acta, 2010, 659: 144.

[33]

Zhang Y. X., Cheng Y. X., Zhou Y. Y., Li B. Y., Gu W., Shi X. H., Xian Y. Z. Talanta, 2013, 107: 211.

[34]

Zhang J., Li Q., Chen M. J., Li H., Xu Z. H. Sensor. Actuat. B: Chem., 2011, 160: 784.

[35]

Liu L. H., Chen Y., Zhang Y. L., Wang F., Chen Z. L. Biomed. Chromatogr., 2011, 25: 935.

[36]

Bard A. J., Faulkner L. R. Electrochemical Methods: Fundamen-tals Applications, 1980, New York: Wiley.

[37]

Li Y. G., Gao Y., Cao Y., Li H. M. Sensor. Actuat. B: Chem., 2012, 171: 726.

AI Summary AI Mindmap
PDF

109

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/