Photolysis and cycloaddition reactivity of diferrocenyl substituted cyclopentadienone

Xiaoyong Zhang , Limin Han , Yuanyuan Gao , Jiale Shi , Quanling Suo

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 775 -780.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 775 -780. DOI: 10.1007/s40242-016-6158-7
Article

Photolysis and cycloaddition reactivity of diferrocenyl substituted cyclopentadienone

Author information +
History +
PDF

Abstract

The photolysis results of new diferrocenyl substituted cyclopentadienone(3) show that sunlight and air play an important role in the decomposition of compound 3, and two new compounds, 2-cyclopentenone(4) and α-pyrone(5), were obtained via photolysis of compound 3. The photolysis process was investigated by 1H NMR, and a plausible mechanism for the formation of compound 5 was deduced. The cycloaddition reactions of substituted cyclopentadienones(3, 7, 9) with maleimide gave substituted imides 8, 10, 11, 12 and an unprecedented diferrocenyl substituted 1H-pyrrol-3(2H)-one derivative 13, respectively. The structures of compounds 4, 5, 8, 10, 11, 12 and 13 were confirmed by X-ray single crystal diffraction analysis technique.

Keywords

Cyclopentadienone / Reactivity / Photolysis / Cycloaddition / Crystal structure

Cite this article

Download citation ▾
Xiaoyong Zhang, Limin Han, Yuanyuan Gao, Jiale Shi, Quanling Suo. Photolysis and cycloaddition reactivity of diferrocenyl substituted cyclopentadienone. Chemical Research in Chinese Universities, 2016, 32(5): 775-780 DOI:10.1007/s40242-016-6158-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Ogliaruso M. A., Romanelli M. G., Becker E. I. Chem. Rev., 1965, 65(3): 261.

[2]

Zhang X. Y., Han L. M., Zhu N., Gao Y. Y., Suo Q. L. Chem. Res. Chinese Universities, 2015, 31(5): 736.

[3]

Liebeskind L. S., Bombrum A. J. Am. Chem. Soc., 1991, 113(23): 8736.

[4]

Mackay D., Papadopoulos D., Taylor N. J. J. Chem. Soc., Chem. Commun., 1992, 4: 325.

[5]

Knölker H. J., Baum E., Heber J. Tetrahedron Lett., 1995, 36(42): 7647.

[6]

Rainier J. D., Imbriglio J. E. Org. Lett., 1999, 1(12): 2037.

[7]

Wiesler U. M., Müllen K. Chem. Commun., 1999, 22: 2293.

[8]

Luo Q., Wang C., Zhang W. X., Xi Z. F. Chem. Commun., 2008, 13: 1593.

[9]

Martin C. J., Gil B., Perera S. D., Draper S. M. Chem. Commun., 2011, 47: 3616.

[10]

Loser P., Winzenburg A., Faust R. Chem. Commun., 2013, 49: 9413.

[11]

Wijesinghe L. P., Lankage B. S., Maille G. M. O., Perera S. D., Nolan D., Wang L. S., Draper S. M. Chem. Commun., 2013, 50: 10637.

[12]

Gleiter R., Werz D. B. Organometallics, 2005, 24(18): 4316.

[13]

Casey C. P., Bikzhanova G. A., Guzei I. A. J. Am. Chem. Soc., 2006, 128(7): 2286.

[14]

Thorson M. K., Klinkel K. L., Wang J., Williams T. Eur. J. Inorg. Chem., 2009, 2009(2): 295.

[15]

Slugovc C., Mauthner K., Mereiter K., Schmid R., Kirchner K. Organometallics, 1996, 15: 2954.

[16]

Haak E. Eur. J. Org. Chem., 2007, 2007(17): 2815.

[17]

Godschalx J. P., Romer D. R., So Y. H., Lysenko Z., Mills M. E., Buske G. R., Townsend P. H., Smith D. W., Martin S. J., Devries R. A. Polyphenylene Oligomers and Polymers, 1997.

[18]

Maier G., Pfriem S., Schafer U., Matusch R. Angew. Chem., 1978, 90(7): 552.

[19]

Maier G., Pfriem S., Schafer U., Malsch K. D., Matusch R. Chem. Ber., 1981, 114(12): 3965.

[20]

Tanaka K., Taniguchi T., Ogasawara K. Tetrahedron Lett., 2001, 42(6): 1049.

[21]

Walters R. S., Kraml C. M., Byrne N., Ho D. M., Qin Q., Coughlin F. J., Bernhard S., Pascal R. A. Jr. J. Am. Chem. Soc., 2008, 130(48): 16435.

[22]

Neudorff W. D., Schulte N., Lentz D., Schlulter A. D. Org. Lett., 2001, 3(20): 115.

[23]

Smyth N., Engen D. V., Pascal R. A. Jr. J. Org. Chem., 1990, 55(6): 1937.

[24]

Szulczyk D., Bielenica A., Dobrowolski M. A., Dobrzycki L., Krawiecka M., Kuran B., Struga M. Med. Chem. Res., 2014, 23(3): 1519.

[25]

McAdam C. J., Brunton J. J., Robinson B. H., Simpson J. J. Chem. Soc. Dalton Trans., 1999, 2487.

[26]

Dennis G. D., Davis D. E., Field L. D., Masters A. F., Maschmeyer T., Ward A. J., Buys I. E., Turner P. Aust. J. Chem., 2006, 59(2): 135.

[27]

McGlacken G. P., Fairlamb I. J. S. Nat. Prod. Rep., 2005, 22: 369.

[28]

Fairlamb I. J. S., Marrison L. R., Dickinson J. M., Lu F. J., Schmidta J. P. Bioorg. Med. Chem., 2004, 12(15): 4285.

[29]

Wu P. L., Hsu Y. L., Wu T. S., Bastow K. F., Lee K. H. Org. Lett., 2006, 8(22): 5207.

[30]

Hagiwara H., Kobayashi K., Miya S., Hoshi T., Suzuki T., Ando M. Org. Lett., 2001, 3(2): 251.

[31]

Puerta D. T., Mongan J., Tran B. L., McCammon J. A., Cohen S. M. J. Am. Chem. Soc., 2005, 127(41): 14148.

[32]

Thaisrivongs S., Janakiraman M. N., Chong K. T., Tomich P. K., Dolak L. A., Turner S. R., Strohbach J. W., Lynn J. C., Horng M. M., Hinshaw R. R., Watenpaugh K. D. J. Med. Chem., 1996, 39(12): 2400.

[33]

Appendino G., Ottino M., Marquez N., Bianchi F., Giana A., Ballero M., Sterner O., Fiebich B. L., Munoz E. J. Nat. Prod., 2007, 70(4): 608.

[34]

Rosenblum M., Brawn N., King B. Tetrahedron Lett., 1967, 8(45): 4421.

[35]

Harrington L. E., Britten J. F., McGlinchey M. J. Canadian Journal of Chemistry, 2003, 81(11): 1180.

[36]

Mueller-Westerhoff U. T., Zhou M. J. Org. Chem., 1994, 59(17): 4988.

[37]

Xu H. Y., Zhang X. Y., He Y., Guo S. H., Fan X. S. Chem. Commun., 2012, 48: 3121.

[38]

Mochida S., Hirano K., Satoh T., Miura M. J. Org. Chem., 2009, 74(16): 6295.

[39]

Kuninobu Y., Kawata A., Nishi M., Takata H., Takai K. Chem. Commun., 2008, 47: 6360.

[40]

Kajita Y., Kurahashi T., Matsubara S. J. Am. Chem. Soc., 2008, 130(51): 17226.

[41]

Lee W. B., Kwak K. T. Journal of the Korean Chemical Society, 1995, 39(2): 136.

[42]

Takata T., Tajima R., Ando W. Chemistry Letters, 1985, 14(5): 665.

[43]

Padwa A., Hartman R. J. Am. Chem. Soc., 1966, 88(7): 1518.

[44]

Ishibe N., Sunami M., Odani M. J. Am. Chem. Soc., 1973, 95(2): 463.

[45]

Gupta H. K., Stradiotto M., Hughes D. W., McGlinchey M. J. J. Org. Chem., 2000, 65(2): 3652.

[46]

Smyth N., Engen D. V., Pascal R. A. J. Org. Chem., 1990, 55(6): 1937.

[47]

Qiao X. X., Padula M. A., Ho D. M., Vogelaar N. J., Schutt C. E., Pascal R. A. J. Am. Chem. Soc., 1996, 118(4): 741.

[48]

Li P. H., Zhang X. L., Wang L. Organic. Lett., 2014, 16(8): 2126.

[49]

Smith A. B., Hirschmann R., Pasternak A., Guzman M. C., Yokoyama A., Sprengeler P. A., Darke P. L., Emini E. A., Schlei P. W. A. J. Am. Chem. Soc., 1995, 117(45): 11113.

[50]

Smith A. B., Hirschmann R., Pasternak A., Yao W. Q., Sprengeler P. A. J. Med. Chem., 1997, 40(16): 2440.

[51]

Smith A. B., Charnley A. K., Hirschmann R. Accounts of Chemical Research, 2011, 44(3): 180.

[52]

Smith A. B., Cantin L. D., Pasternak A., Zawacki L. G., Yao W. Q., Charnley A. K., Barbosa J., Sprengeler P. A., Hirschmann R., Munshi S., Olsen D. B., Schleif W. A., Kuo L. C. J. Med. Chem., 2003, 46(8): 1831.

[53]

Vanel R., Berthiol F., Bessières B., Einhorn C., Einhorn J. Synlett., 2011, 2011(9): 1293.

AI Summary AI Mindmap
PDF

112

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/