Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate

Jihua Zhang , Jie Li , Mingjie Liu , Yunfeng Zhao , Shutao Wang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1045 -1051.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1045 -1051. DOI: 10.1007/s40242-016-6148-9
Article

Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate

Author information +
History +
PDF

Abstract

Thermal decomposition processes and mechanism of low-temperature grade hydrogenated acrylonitrile butadiene rubber(LTG-HNBR) composites with sodium methacrylate(NaMAA) were investigated by thermogravimetric analysis(TGA) and Fourier transform infrared spectroscopy(FTIR) coupling technology in this article. The results of TGA demonstrate that the addition of NaMAA can enhance the thermal decomposition temperature of the rubber. Moreover, it was found that the composites spent more activation energies to decompose than pure rubber by the calculations of multiply heating rate method. Time-resolved FTIR spectra show that NaMAA affects the initial decomposition of the composites. But in the following process, the composites maintained a similar behavior to the matrix. During the decomposition, PNaMAA nanostructures, in-situ generated by NaMAA, helped reduce the diffusion speed of decomposition products and thus improved the thermal stability of the composites. We believe that these findings can provide some guides to direct the applications of LTG-HNBR composites with unsaturated metal methacrylates.

Keywords

Decomposition kinetics / Sodium methacrylate / Hydrogenated acrylonitrile butadiene rubber composite

Cite this article

Download citation ▾
Jihua Zhang, Jie Li, Mingjie Liu, Yunfeng Zhao, Shutao Wang. Thermal decomposition kinetics and mechanism of low-temperature hydrogenated acrylonitrile butadiene rubber composites with sodium methacrylate. Chemical Research in Chinese Universities, 2016, 32(6): 1045-1051 DOI:10.1007/s40242-016-6148-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cao P., Huang C., Zhang L., Yue D. RSC Adv., 2015, 5: 41098.

[2]

Hayashi S., Sakakida H., Oyama M. T. Nakagawa, Rubber Chem. Tech., 1991, 64: 534.

[3]

Potts J., Shankar O., Du L., Ruoff R. Macromolecules, 2012, 45(15): 6045.

[4]

Singh V., Shukla A., Patra M., Saini L., Jani R., Vadera S., Kumar N. Carbon, 2012, 50(6): 2202.

[5]

Li Q., Zhao S., Pan Y. J. Appl. Polym. Sci., 2010, 117: 421.

[6]

Li Y., Wang Q., Wang T., Pan G. J. Mater. Sci., 2012, 47: 730.

[7]

Bhattacharya M., Bhowmick A. K. J. Mater. Sci., 2010, 45: 6126.

[8]

Wang X., Huang A., Jia D., Li Y. Eur. Polym. J., 2008, 44: 2784.

[9]

Wang Z., Fan X., Wang K., Deng H., Chen F., Fu Q., Na B. Polym. Adv. Technol., 2011, 22: 1375.

[10]

Guan Y., Zhang L. X., Zhang L. Q., Lu Y. L. Polym. Degrad. Stabil., 2011, 96(5): 808.

[11]

Lu Y., Liu L., Yang C., Tian M., Zhang L. Eur. Polym. J., 2005, 41: 577.

[12]

Wei Z., Lu Y., Meng Y., Zhang L. Polymer, 2012, 53: 1409.

[13]

Wahba L., D’Arienzo M., Donetti R., Hanel T., Scotti R., Tadiello L., Morazzoni F. RSC Adv., 2013, 3: 5832.

[14]

Guo B., Lei Y., Chen F., Liu X., Du M., Jia D. Appl. Surf. Sci., 2008, 255: 2715.

[15]

Lu Y., Liu L., Tian M., Geng H., Zhang L. Euro. Polym. J., 2005, 41: 589.

[16]

Chrissafis K., Paraskevopoulos K. M., Stavrev S. Y., Docoslis A., Vassiliou A., Bikiaris D. N. Thermochim. Acta, 2007, 465: 6.

[17]

Nie Y., Huang G., Qu L., Zhang P., Weng G., Wu J. J. Appl. Polym. Sci., 2010, 115: 99.

[18]

Yu H., Zhang Y., Chen S., Ren W., Hoch M., Guo S. J. Appl. Polym. Sci., 2011, 119: 1813.

[19]

Rajesh Kumar S., Asseref P. M., Dhanasekaran J., Krishna Mohan S. RSC Adv., 2014, 4: 12526.

[20]

Wang L., Lang F., Du F., Wang Z. J. Macromol. Sci., Part B: Physics, 2013, 52: 178.

[21]

Choudhury A., Bhowmick A. K., Ong C. J. Appl. Polym. Sci., 2010, 116: 1428.

[22]

Chrissafisa K., Bikiaris D. Thermochim. Acta, 2011, 523: 1.

[23]

Xiong X., Wang J., Jia H., Fang E., Ding L. Polym. Degrad. Stabil., 2013, 98: 2208.

[24]

Zhang J., Wang L., Zhao Y. Mater. Design, 2013, 50: 322.

[25]

Chae H. D., Basuli U., Lee J. H., Lim C. I., Lee R. H., Kim S. C., Jeon N. D., Nah C. Polym. Compos., 2012, 33: 1141.

[26]

Thavamani P., Sen A. K., Khastgir D., Bhowmick A. K. Thermochim. Acta, 1993, 219: 293.

[27]

Zhang J., Feng H., Zao W., Ling M., Liu X., Zhao Y. Chem. J. Chinese Universities, 2015, 36(7): 1447.

[28]

Coats A. W., Redfern J. P. Nature, 1964, 201: 68.

[29]

Kissinger H. E. Anal. Chem., 1957, 29: 1702.

[30]

Ozawa T. Bull. Chem. Soc. Jpn., 1965, 38: 1881.

[31]

Friedman H. L. J. Macromol. Sci. Part A, 1967, 1: 57.

[32]

Hong J., Song L., Zhou X., Diakite K., Zhang K. Chem. Res. Chinese Universities, 2010, 26(2): 300.

[33]

Park J. W., Oh S. C., Lee H. P., Kim H. T., Yoo K. O. Polym. Degrad. Stabil., 2000, 67: 535.

[34]

Bhattacharjee S., Bhowmick A. K., Avasthi B. N. Polym. Degrad. Stabil., 1991, 31: 71.

[35]

Budrugeac P., Petre A. L., Segal E. Therm. Anal., 1996, 47: 123.

[36]

Peterson J. D., Vyazovkin S., Wight C. A. Macromol. Chem. Phys., 2001, 202: 775.

[37]

Singh S., Wu C., Williams P. T. J. Anal. Appl. Pyrol., 2012, 94: 99.

[38]

Fernández-Berridi M., González N., Mugica A., Bernicot C. Thermochim. Acta, 2006, 444: 65.

[39]

Fuh M. R. S., Wang G. Y. Anal. Chim. Acta, 1998, 371: 89.

[40]

Lépine L., Gilbert R. Polym. Degrad. Stabil., 2002, 75: 337.

[41]

Wen S., Zhou Y., Yao L., Zhang L., Chan T., Liang Y., Liu L. Thermochim. Acta, 2013, 571: 15.

[42]

Zhou Y. Study on Unsaturated Carboxylic Acid Metal Salts’ Homopolymerization and In-situ Preparation of Methylacrylic acide Samarium/NBR Composites, 2011, Beijing: Beijing University of Chemical Technology.

AI Summary AI Mindmap
PDF

129

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/