Fabrication and manipulation of magnetic composite particles with specific shape and size

Qing Shi , Gong Wang , Chao Lü , Hong Xia

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1052 -1056.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1052 -1056. DOI: 10.1007/s40242-016-6143-1
Article

Fabrication and manipulation of magnetic composite particles with specific shape and size

Author information +
History +
PDF

Abstract

The fabrication of microscale polyethylene glycol diacrylate(PEGDA) hydrogel particles was demonstrated via magnetic property ultraviolet(UV) lithography techniques, polydimethylsiloxane(PDMS) soft stamp preparation techniques and micro-nano imprint technology in this paper. The results of compositional and morphological characterizations of magnetic microparticles show that the Fe3O4 nanoparticles with an average diameter of 100 nm are uniformly dispersed in hydrogel. Owing to the excellent magnetism of Fe3O4 nanoparticles, the fabricated hydrogel microparticles with different sizes and shapes were manipulated in water via applying an external magnetic fields. Three types of motions, translation, rotation and flip, were demonstrated with the manipulator. These microscale magnetic PEGDA hydrogel particles have a great application potential in manufacturing process, micro/nanomotors, and machines.

Keywords

Magnetic nanoparticle / Hydrogel particle / Micro-nano imprint / Magnetic motor

Cite this article

Download citation ▾
Qing Shi, Gong Wang, Chao Lü, Hong Xia. Fabrication and manipulation of magnetic composite particles with specific shape and size. Chemical Research in Chinese Universities, 2016, 32(6): 1052-1056 DOI:10.1007/s40242-016-6143-1

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Xia H., Zhang L., Chen Q. D., Guo L., Fang H. H., Li X. B., Song J. F., Huang X. R., Sun H. B. J. Phys. Chem. C, 2009, 113: 18542.

[2]

Morgan T. T., Muddana H. S., Altinoglu E. I., Rouse S. M., Tabaković A., Tabouillot T., Russin T. J., Shanmugavelandy S. S., Butler P. J., Eklund P. C., Yun J. K., Kester M., Adair J. H. Nano Lett., 2008, 8(12): 4108.

[3]

Kester M., Heakal Y., Fox T., Sharma A., Robertson G. P., Morgan T. T., Altinog˘lu E. I., Tabakovic´ A., Parette M. R., Rouse S. M., Ruiz-Velasco V., Adair J. H. Nano Lett., 2008, 8(12): 4116.

[4]

Wang D. S., He J. B., Rosenzweig N., Rosenzweig Z. Nano Lett., 2004, 4(3): 409.

[5]

Yang N., Zhu S. M., Zhang D., Xu S. Mater. Lett., 2008, 62: 645.

[6]

Zhang L., Dong W. F., Tang Z. Y., Song J. F., Xia H., Sun H. B. Opt. Lett., 2010, 35: 3297.

[7]

Gao Q., Zhang J. L., Hong G. Y., Ni J. Z. Chem. J. Chinese Universities, 2011, 32(3): 552.

[8]

Yue P., Xue W. D., Fan Z., Bing X. Chem. Soc. Rev., 2012, 41: 2912.

[9]

Zhang L., He R., Gu H. C. Appl. Surf. Sci., 2006, 253: 2611.

[10]

Lia S., Yu-Ho W., Mallikarjunarao G., Silvana A. Sensors, 2009, 9: 2976.

[11]

Cheng C., Xin Y., Yin X. Chem. Res. Chinese Universities, 2014, 30(5): 743.

[12]

Thammawong C., Sreearunothai P., Petchsuk A., Tangboriboonrat P., Pimpha N., Opaprakasit P. J. Nanopart. Res., 2012, 14: 1046.

[13]

Ding G. B., Liu H. Y., Wang Y., Lv Y. Y., Wu Y., Guo Y., Xu L. Chem. Res. Chinese Universities, 2013, 29(1): 103.

[14]

Netto C. G. C. M., Toma H. E., Andrade L. H. J. Mol. Catal. B: Enzym., 2013, 85.

[15]

Hergta R., Hiergeista R., Hilgerb I., Kaiserb W. A., Lapatnikovc Y., Margelc S., Richterd U. J. Magn. Magn. Mater., 2004, 270: 345.

[16]

Johannsen M., Jordan A., Scholz R., Koch M., Lein M., Deger S., Roigas J., Jung K., Loening S. J. Endourol., 2004, 18: 495.

[17]

Amoli-Diva M., Pourghazi K., Hajjaran S. Mater. Sci. Eng. C, 2016, 60: 30.

[18]

Tan F., Zhuang Z. X., Yang H. H. Chem. J. Chinese Universities, 2007, 28(8): 1483.

[19]

Li W. Z., Li J., Tan Z. M. Chem. J. Chinese Universities, 2009, 30(12): 2331.

[20]

Rajput S., Pittman C. U. Jr., Mohan D. J. Colloid Interface Sci., 2016, 468: 334.

[21]

Gao R. X., Cui X. H., Hao Y., Zhang L. L., Liu D. H., Tang Y. H. Food Chemistry, 2016, 194: 1040.

[22]

Sugioka K., Cheng Y. Light Sci. Appl., 2014, 3: e149.

[23]

Wang J., Xia H., Xu B. B., Niu L. G., Wu D., Chen Q. D., Sun H. B. Opt. Lett., 2009, 34: 581.

[24]

Xia H., Wang J., Tian Y., Chen Q. D., Du X. B., Zhang Y. L., He Y., Sun H. B. Adv. Mater., 2010, 22: 3204.

[25]

Zhang Y. L., Chen Q. D., Xia H., Sun H. B. Nano Today, 2010, 5: 435.

[26]

Schumann M., Bückmann T., Gruhler N., Wegener M., Pernice W. Light Sci., Appl., 2014, 3.

[27]

Tian Y., Zhang Y. L., Ku J. F., He Y., Xu B. B., Chen Q. D., Xia H., Sun H. B. Lab Chip, 2010, 10: 2902.

[28]

Kim S., Qin F., Kim S., Ghanbari A., Moon C., Zhang L., Nelson B. J., Choi H. Adv. Mater., 2013, 25: 5863.

[29]

Tottori S., Zhang L., Qiu F., Krawczyk K. K., Franco-Obregón A., Nelson B. J. Adv. Mater., 2012, 24: 811.

[30]

Wang W. K., Sun Z. B., Zheng M. L., Dong X. Z., Zhao Z. S., Duan X. M. J. Phys. Chem. C, 2011, 115: 11275.

[31]

Sun Y. L., Dong W. F., Niu L. G., Jiang T., Liu D. X., Zhang L., Wang Y. S., Chen Q. D., Kim D. P., Sun H. B. Light Sci. Appl., 2014, 3: e129.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/