Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion

Yongchang Jia , Shuyuan Wang , Jiqing Lu , Mengfei Luo

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 808 -811.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 808 -811. DOI: 10.1007/s40242-016-6141-3
Article

Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion

Author information +
History +
PDF

Abstract

Highly ordered 2D and 3D-Co3O4 catalysts were prepared using SBA-15 and KIT-6 as templates. Nano-Co3O4 catalyst was obtained by calcination of cobalt nitrate as a comparison. The BET surface area of nano- Co3O4, 2D-Co3O4 and 3D-Co3O4 catalysts was 16.2, 63.9 and 75.1 m2/g, respectively. All the catalysts were tested for the total combustion of methane and their catalytic performance was in order of 3D-Co3O4(T 90=355 °C)>2D-Co3O4 (T 90=383 °C)>nano-Co3O4(T 90=455 °C). It was also found that the order of the areal specific reaction rates for the combustion of methane follow the same order of total activity. The characterization result demonstrated that enhanced catalytic performance of methane of the 2D-Co3O4 and 3D-Co3O4 catalysts was due to their pronounced reducibility and abundant active Co3+ species which was caused by the preferential exposure of {220} crystal planes in 3D-Co3O4 and 2D-Co3O4 catalysts compared to the nano-Co3O4.

Keywords

Mesoporous Co3O4 / Hard template / CH4 oxidation / KIT-6 / SBA-15

Cite this article

Download citation ▾
Yongchang Jia, Shuyuan Wang, Jiqing Lu, Mengfei Luo. Effect of structural properties of mesoporous Co3O4 catalysts on methane combustion. Chemical Research in Chinese Universities, 2016, 32(5): 808-811 DOI:10.1007/s40242-016-6141-3

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Satsuma A., Tojo T., Okuda K., Yamamoto Y., Arai S., Oyama J. Catalysis Today, 2015, 242(2): 308.

[2]

Liotta L. F., Di Carlo G., Longo A., Pantaleoa G., Veneziaa A. M. Catalysis Today, 2008, 139(3): 174.

[3]

Lapisardi G., Urfels L., Gélin P., Primeta M., Kaddouria A., Garbowskia E., Toppib S., Tenab E. Catalysis Today, 2006, 117(4): 564.

[4]

Persson K., Jansson K., Järås S. G. Journal of Catalysis, 2007, 245(2): 401.

[5]

Hu L., Peng Q., Li Y. J. Am. Chem. Soc., 2008, 130(48): 16136.

[6]

Sutthiumporn K., Kawi S. International Journal of Hydrogen Energy, 2011, 36(22): 14435.

[7]

Garcia T., Agouram S., Sánchez-Royo J. F., Murillo R., Mastral A. M., Aranda A., Vázqueze I., Dejoze A., Solsona B. Applied Cata-lysis A: General, 2010, 386(1): 16.

[8]

Kleitz F., Bérubé F., Guillet-Nicolas R., Yang C. M., Thommes M. J. Phys. Chem. C, 2010, 114(20): 9344.

[9]

Zhao D., Huo Q., Feng J., Chmelka B. F., Stucky G. D. J. Am. Chem. Soc., 1998, 120(24): 6024.

[10]

Wang Y., Yang C. M., Schmidt W., Spliethoff B., Bill E., Schüth F. Adv. Mater., 2005, 17(1): 53.

[11]

Tüysüz H., Lehmann C. W., Bongard H., Tesche B., Schmidt R., Schüth F. J. Am. Chem. Soc., 2008, 130(34): 11510.

[12]

Xia Y., Dai H., Jiang H., Zhang L. Catal. Commun., 2010, 11(15): 1171.

[13]

Tüysüz H., Comotti M., Schüth F. Chem. Commun., 2008, 34: 4022.

[14]

Xie X., Shen W. Nanoscale, 2009, 1(1): 50.

[15]

Bai B., Arandiyan H., Li J. Applied Catalysis B: Environmental, 2013, 142(1): 677.

[16]

Xie X., Li Y., Liu Z. Q., Haruta M., Shen W. Nature, 2009, 458(7239): 746.

AI Summary AI Mindmap
PDF

158

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/