Effect of Zr addition on catalytic performance of Cu-Zn-Al oxides for CO2 hydrogenation to methanol

Shunge Ben , Fulong Yuan , Yujun Zhu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1005 -1009.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1005 -1009. DOI: 10.1007/s40242-016-6130-6
Article

Effect of Zr addition on catalytic performance of Cu-Zn-Al oxides for CO2 hydrogenation to methanol

Author information +
History +
PDF

Abstract

A series of 50%CuO-25%ZnO-25%Al(Zr) oxide catalysts was synthesized by a reverse co-precipitation method and characterized by XRD, N2 adsorption-desorption, H2-TPR, H2-TPD and CO2-TPD, and used as catalyst for CO2 hydrogenation to methanol under mild conditions(200―260 °C and 1―3 MPa). Consequently, H2-TPR ex-hibited that the dispersed CuO species increased with the zirconium content, while the H2-TPD showed that small amount of zirconia can increase the H2 desorption amount. As a result, Cat-2 and Cat-3 exhibited an enhanced H2-spillover effect, the most H2 desorption amount, which showed an optimum activity of about 7% methanol yield.

Keywords

Carbon dioxide / Reverse co-precipitation / Methanol / Catalytic hydrogenation / Copper based catalyst

Cite this article

Download citation ▾
Shunge Ben, Fulong Yuan, Yujun Zhu. Effect of Zr addition on catalytic performance of Cu-Zn-Al oxides for CO2 hydrogenation to methanol. Chemical Research in Chinese Universities, 2016, 32(6): 1005-1009 DOI:10.1007/s40242-016-6130-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chen Q., Lv M., Tang Z., Wang H., Wei W., Sun Y. J. CO2 Util., 2016, 14: 1.

[2]

Wang W., Wang S., Ma X., Gong J. Chem. Soc. Rev., 2011, 40(7): 3703.

[3]

Li L., Zhao N., Wei W., Sun Y. Fuel, 2013, 108: 112.

[4]

Munshi P., Main A. D., Linehan J. C., Tai C. C., Jessop P. G. J. Am. Chem. Soc., 2002, 124(27): 7963.

[5]

Bai H. P., Zheng Y. P., Li P. P., Zhang A. B. Chem. Res. Chinese Universities, 2015, 31(3): 488.

[6]

Gao P., Li F., Xiao F., Zhao N., Wei W., Zhong L., Sun Y. Catal. To-day, 2012, 194(1): 9.

[7]

Raudaskoski R., Niemelä M. V., Keiski R. L. Top. Catal., 2007, 45(1-4): 57.

[8]

Gao P., Li F., Zhan H., Zhao N., Xiao F., Wei W., Zhong L., Wang H., Sun Y. J. Catal., 2013, 298: 51.

[9]

Arena F., Mezzatesta G., Zafarana G., Trunfio G., Frusteri F., Spada-ro L. J. Catal., 2013, 300: 141.

[10]

Grabowski R., Sloczynski J., Sliwa M., Mucha D., Socha R. P., Lachowska M., Skrzypek J. ACS Catal., 2011, 1(4): 266.

[11]

Kwak J. H., Kovarik L., Szanyi J. ACS Catal., 2013, 3(11): 2449.

[12]

Zhang R., Liu H., Wang B., Ling L. Appl. Catal. B, 2012, 126: 108.

[13]

Liang X. L., Dong X., Lin G. D., Zhang H. B. Appl. Catal. B, 2009, 88(3/4): 315.

[14]

Karelovic A., Bargibant A., Fernández C., Ruiz P. Catal. Today, 2012, 197(1): 109.

[15]

Ernst K. H., Schlatterbeck D., Christmann K. Phys. Chem. Chem. Phys., 1999, 1(17): 4105.

[16]

Li Z. X., Na W., Wang H., Gao W. G. Chem. J. Chinese Universities, 2014, 35(12): 2616.

[17]

Liu R., Zha F., Yang A. M., Chang Y. Chem. J. Chinese Universities, 2016, 37(5): 964.

[18]

Zhang Y. N., Li J. L., Huang X. R. Chem. J. Chinese Universities, 2016, 37(3): 534.

[19]

Shishido T., Yamamoto M., Li D., Tian Y., Morioka H., Honda M., Sano T., Takehira K. Appl. Catal. A, 2006, 303(1): 62.

[20]

Jones S. D., Neal L. M., Hagelin-Weaver H. E. Appl. Catal. B, 2008, 84(3/4): 631.

[21]

Baltes C., Vukojevic S., Schuth F. J. Catal., 2008, 258(2): 334.

[22]

Wang D., Tao F., Zhao H., Song H., Chou L. Chinese J. Catal., 2011, 32(9/10): 1452.

[23]

Ladera R., Pérez-Alonso F. J., González-Carballo J. M., Ojeda M., Rojas S., Fierro J. L. G. Appl. Catal. B, 2013, 142/143: 241.

[24]

Zhuang H. D., Bai S. F., Liu X. M., Yan Z. F. J. Fuel Chem. Technol., 2010, 38(4): 462.

[25]

Collins S. E., Chiavassa D. L., Bonivardi A. L., Baltanás M. A. Catal. Lett., 2005, 103(1/2): 83.

[26]

Guo X., Mao D., Lu G., Wang S., Wu G. Catal. Commun., 2011, 12(12): 1095.

[27]

Wu D. L., Jiang W., Liu X. Q., Qiu N. X., Xue Y. Chem. Res. Chinese Universities, 2016, 32(1): 118.

[28]

Zhao Y. F., Yang Y., Mims C., Peden C. H. F., Li J., Mei D. J. Catal., 2011, 281(2): 199.

[29]

Medford A. J., Sehested J., Rossmeisl J., Chorkendorff I., Studt F., Nørskov J. K., Moses P. G. J. Catal., 2014, 309: 397.

[30]

Grabow L. C., Mavrikakis M. ACS Catal., 2011, 1(4): 365.

[31]

Wang D., Zhao J., Song H., Chou L. J. Nat. Gas Chem., 2011, 20(6): 629.

[32]

Baltes C., Vukojevic S., Schuth F. J. Catal., 2008, 258: 334.

[33]

Behrens M., Kasatkin I., Kühl S., Weinberg G. Chem. Mater., 2010, 22(2): 386.

[34]

Arena F., Italiano G., Barbera K., Bordiga S., Bonura G., Spadaro L., Frusteri F. Appl. Catal. A, 2008, 350(1): 16.

[35]

An X., Li J., Zuo Y., Zhang Q., Wang D., Wang J. Catal. Lett., 2007, 118(3/4): 264.

[36]

Li C., Yuan X., Fujimoto K. Appl. Catal. A, 2014, 469: 306.

[37]

Kong L. Z., Wang Q., Xu L., Yan Y. S., Li H. M., Yang X. G. Chem. J. Chinese Universities, 2015, 36(7): 1372.

[38]

Wambach J., Baiker A., Wokaun A. Phys. Chem. Chem. Phys., 1999, 1(22): 5071.

[39]

Guo X., Mao D., Wang S., Wu G., Lu G. Catal. Commun., 2009, 10(13): 1661.

[40]

Arena F., Mezzatesta G., Zafarana G., Trunfio G., Frusteri F., Spadaro L. Catal. Today, 2013, 210: 39.

[41]

Jia L., Gao J., Fang W., Li Q. J. Rare Earth., 2010, 28(5): 747.

[42]

Zhan H., Li F., Gao P., Zhao N., Xiao F., Wei W., Zhong L., Sun Y. J. Power Sources, 2014, 251: 113.

AI Summary AI Mindmap
PDF

132

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/