Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature

Pengjia Qi , Ziying Wang , Rui Wang , Yinan Xu , Tong Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 924 -928.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 924 -928. DOI: 10.1007/s40242-016-6129-z
Article

Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature

Author information +
History +
PDF

Abstract

Synthetic graphene composite was modified on a transducer of quartz crystal microbalance(QCM) to fabricate a gas sensor for low concentration nitrogen dioxide(NO2) detection. The gas sensing properties of the QCM coated with SnO2-rGO and AgNPs-SnO2-rGO composites were investigated when exposing QCM to low NO2 con-centration(2.05—20.5 mg/m3) atmosphere at room temperature. The sensing performances of the QCM with AgNPs-SnO2-rGO composites were enhanced by the introduction of Ag nanoparticles, and the QCM modified with AgNPs-SnO2-rGO composites could detect NO2 at room temperature.

Keywords

Quartz crystal microbalance / Nitrogen dioxide / Low concentration / Qraphene / Room temperature

Cite this article

Download citation ▾
Pengjia Qi, Ziying Wang, Rui Wang, Yinan Xu, Tong Zhang. Studies on QCM-type NO2 gas sensor based on graphene composites at room temperature. Chemical Research in Chinese Universities, 2016, 32(6): 924-928 DOI:10.1007/s40242-016-6129-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hoek G., Krishnan R. M., Beelen R., Peters A., Ostro B., Brunekreef B. Environ. Health, 2013, 12(1): 43.

[2]

Naama L. Y., Timor S. M., Yinon M., Oded Y., Yinon R. Science of the Total Environment, 2016, 541(9): 365.

[3]

Tonezzer M., Hieu N. V. Sensors and Actuators B, 2012, 163: 146.

[4]

Wang L., Dou H., Lou Z., Zhang T. Nanoscale, 2013, 5(2): 2686.

[5]

Wang L. L., Deng J. N., Lou Z., Zhang T. Sensors and Actuators B, 2014, 201(4): 1.

[6]

Wen C., Zhu C., Ju Y., Xu H., Qiu Y. Sensors and Actuators A, 2010, 159(3): 168.

[7]

Yang J. C., Dutta P. K. J. J. Phys. Chem. C, 2007, 111: 8307.

[8]

Grigorieva V., Firsov A. A. Science, 2004, 306(5696): 666.

[9]

Castro A. H., Guinea F., Peres N. M. R., Geimet A. K. Rev. Mod. Phys., 2009, 81(1): 109.

[10]

Novoselov K. S., Geim A. K., Morozov S. V. Chem. Rev., 2010, 110(1): 132.

[11]

Fu W. Y., Liu L., Wang W. L. Sci. China-Phys. Mech. Astron., 2010, 53(5): 828.

[12]

Li X., Dai Y., Ma Y. Chem. Phys., 2014, 16(3): 4230.

[13]

Zhang Y., Han H. Adv. Funct. Mater., 2015, 25(9): 4430.

[14]

Chatterjee S. G., Chatterjee S., Ray A. K. Sensors and Actuators B, 2015, 221(7): 1170.

[15]

Zhang Y., Ji Y., Wang Z., Zhang T. RSC Adv., 2015, 5: 106307.

[16]

Ye Z. B., Tai H., Xie T. Sensors and Actuators B, 2016, 223(9): 149.

[17]

Su P. G., Yang L. Y. Sensors and Actuators B, 2016, 223(9): 202.

[18]

Sridevi S., Vasu K. S., Navakanta B. Sensors and Actuators B, 2016, 223(9): 481.

[19]

Sauerbrey G. Z. Z. Phys., 1959, 155: 206.

[20]

Hummers W. S., Offeman R. J. Am. Chem. Soc, 1958, 80: 1339.

[21]

Zhang H., Feng J., Fei T., Zhang T. Sensors and Actuators B, 2014, 190(8): 472.

[22]

Wang Z. Y., Zhang Y., Liu S., Zhang T. Sensors and Actuators B, 2016, 222(9): 893.

[23]

Wang L., Han B. H., Wang Z. J., Dai L. Sensors and Actuators B, 2015, 207(10): 791.

[24]

Varghese S. S., Lonkar S., Lonkar K. K., Swaminathan S., Abdala A. Sensors and Actuators B, 2015, 218(4): 160.

[25]

Da H. B. Y. L., Wang X. H., Li X. T. Chem. J. Chinese Universities, 2014, 35(2): 357.

[26]

Gu F., Nie R., Han D. Sensors and Actuators B, 2015, 219(4): 94.

[27]

Zhang Y. H., Chen Y. B., Zhou K. G. Nanotechnology, 2009, 20: 185504.

[28]

Yavari F., Koratkar N. J. Phys. Chem. Lett., 2012, 3: 1746.

[29]

Su P. G., Peng S. L. Talanta, 2015, 132(9): 398.

[30]

Chen N., Li X., Wang X., Yu J., Wang J., Tang Z. Sensors and Actuators B, 2013, 188: 902.

[31]

Cui S., Pu H., Mattson E. C. Nanoscale, 2012, 4: 5887.

AI Summary AI Mindmap
PDF

179

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/