A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate

Ya Zhang , Linlin Qian , Wei Yin , Bin He , Fangmei Liu , Changjun Hou , Danqun Huo , Huanbao Fa

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 725 -730.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 725 -730. DOI: 10.1007/s40242-016-6120-8
Article

A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate

Author information +
History +
PDF

Abstract

Molecularly imprinted membrane-zinc porphyrin-mathacrylate(MIM-Zn-MAA), a dual read-out sensor based on a molecularly imprinted membrane, was developed to recognize and detect dimethyl methylphosphonate (DMMP) as an intermediate molecule of organophosphorus pesticides. The membranes were prepared via thermal polymerization of two functional monomers(zinc porphyrin and mathacrylate) on the surface of a glass slide functionalized with ethylene glycol dimethacrylate and azobisisobutyronitrile. The morphology of the as-synthesized MIM-Zn-MAA was determined with scanning electronic microscopy. The composite membranes exhibited macrovoid morphologies, which were affected by the functional monomers. These membranes were selectively adsorbed onto the template molecule and displayed higher adsorbing capacity toward DMMP compared with their structural analogs. Changes in the fluorescent spectra were qualitatively and quantitatively monitored via fluorescence photometry. Difference maps were also obtained using colorimetry before and after the reaction between MIM-Zn-MAA and DMMP at various concentrations. The maps showed a wide linear range varying from 0.1 µmol/L to 10 mmol/L with a low detection limit of 0.1 µmol/L. These preliminary results demonstrate that the as-fabricated dual read-out sensor displays good sensitivity and selectivity toward DMMP, indicaing its considerable potential in DMMP detection in real applications.

Keywords

Zinc porphyrin / Organophosphate / Molecularly imprinted polymer membrane / Fluorescence / Colorimetric detection

Cite this article

Download citation ▾
Ya Zhang, Linlin Qian, Wei Yin, Bin He, Fangmei Liu, Changjun Hou, Danqun Huo, Huanbao Fa. A dual read-out molecularly imprinted composite membrane sensor based on zinc porphyrin for the detection of dimethyl methylphosphonate. Chemical Research in Chinese Universities, 2016, 32(5): 725-730 DOI:10.1007/s40242-016-6120-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim K., Tsay O. G., Atwood D. A., Churchill D. G. Chem. Rev., 2011, 111: 5345.

[2]

Funari R., Ventura B. D., Sciavo L., Esposito R., Altucci C. Anal. Chem., 2013, 85: 6392.

[3]

Chen W., Liu Y., Jiao B. Food Control, 2016, 66: 87.

[4]

Yan X., Li H., Li Y., Su X. Anal. Chim. Acta, 2014, 852: 189.

[5]

Zhang B. H., Pan X. P., Venne L., Dunnum S. Talanta, 2008, 75: 1055.

[6]

Xie W., Han C., Qian Y., Ding H. Y., Chen X. M., Xi J. Y. J. Chromatogr. A, 2011, 1218: 4426.

[7]

Moslem M. L., Fereshteh H. Iran Polym. J., 2014, 23: 933.

[8]

Banerjee S. K. B. J. Am. Chem. Soc., 2013, 135: 2967.

[9]

Michaels A. S., Baddour R. F., Bixler H. J., Choo C. Y. Ind. Eng. Chem. Process. Des. Dev., 1962, 1: 14.

[10]

Banerjee S., König B. J. Am. Chem. Soc, 2013, 135: 2967.

[11]

Lei Y. L., Chen F., Luo Y. J. Iran Polym. J., 2014, 23: 679.

[12]

Sun G., Fang Y., Zhi H., Li Z. W. Chem. Res. Chinese Universities, 2015, 31(5): 895.

[13]

Wang X. D., Dong J., Ming H. M., Ai S. Y. Analyst, 2013, 138: 1219.

[14]

Yan X. N., Deng J., Xu J. S., Li H., Wang L. L., Chen D., Xie J. Sensor Actuat B: Chem., 2012, 171: 1087.

[15]

Sun G. Q., Wang P. P., Ge S. G., Ge L., Yu J. H., Yan M. Biosens. Bioelectron., 2014, 56: 97.

[16]

Toro M. J. U., Marestoni L. D., Sotomayor M. D. P. T. Sensor Actuat B: Chem., 2015, 208: 299.

[17]

Wackerlig J., Lieberzeit P. A. Sensor Actuat B: Chem., 2015, 207: 144.

[18]

Kim J. M., Yang J. C., Park J. Y. Sensor Actuat B: Chem., 2015, 206: 50.

[19]

White B. J., Biosens H. J. Biosen. Bioelectron., 2002, 17: 463.

[20]

Li D. Y., He X. W., Chen Y., Li W. Y., Zhang Y. K. ACS Appl. Mater. Interfaces, 2013, 23: 12609.

[21]

Huo D. Q., Yang L. M., Hou C. J., Fa H. B., Luo X. G., Lu Y., Zheng X. L., Yang J., Yang L. Spectro. Chim. Acta A, 2009, 74: 336.

[22]

Dunbar A. D. F., Brittle S., Richardson T. H., Hutchinson J. J. Phys. Chem. B, 2010, 114: 11697.

[23]

Fa H. B., Zhang H. F., Yin W., Hou C. J., Huo D. Q., Mao Y. L., Zhang J. High Perform Polym., 2014, 25: 790.

[24]

Liang F. H., Wang D., Ma P., Wang X. H., Song D. Q., Yu Y. Chem. Res. Chinese Universities, 2015, 31(5): 724.

[25]

Hou C. J., Li J. J., Huo D. Q., Luo X., Dong J. L., Yang M., Shi X. J. Sensor Actuat B: Chem., 2012, 161: 244.

[26]

Beltran A., Bo R. F., Cormack P. A. G., Marce R. M. Trac-Trends Anal. Chem., 2010, 29: 1363.

[27]

Mi Y. S., Liang P. X., Zhou Y., Dong W., Hui C., He W. L., Huai Y. Chem. Res. Chinese Universities, 2015, 31(6): 992.

[28]

Xue R. M., Zhao Y., Xu G., Li Y. W., Li Y. F. Chem. Res. Chinese Universities, 2015, 31(5): 865.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/