PDF
Abstract
A series of guanidine salts of 4,4′-azo-1,2,4-triazol-5-one with guanidine(1), aminoguanidine(2), diaminoguanidine(3) and triaminoguanidine(4) was prepared. Compounds 2―4 were characterized by infrared(IR) spectroscopy, elemental analysis and single-crystal X-ray diffraction. Thermal decomposition processes of compounds 1―4 were investigated by differential scanning calorimetry(DSC), and all the compounds showed good thermal stability up to 190 °C. Moreover, these four guanidine salts are more unstable with the increasing number of amino groups. Thermal stability parameters(T e, 0 and T b) and thermodynamic functions(ΔS ≠, ΔH ≠ and ΔG ≠) for compounds 1―4 were calculated. The constant-volume combustion heats(Δc U) for compounds 2―4 were determined and tended to increase with the increase of the number of amino groups. The calculated standard molar enthalpy of formation(Δf H m 0) of compounds 2―4 are–541.04,–178.67 and–83.08 kJ/mol, respectively. The impact sensitivities results indicate these four energetic salts are less sensitive than 1,3,5-trinitrotriazacyccohexane(RDX) and 1,3,5,7-tetranitrotetraqza-cyclo-octane(HMX).
Keywords
4,4′-Azo-1,2,4-triazol-5-one
/
High-nitrogen energetic compound
/
X-Ray diffraction
/
Thermal property
Cite this article
Download citation ▾
Jiajia Guo, Jie Huang, Jirong Song, Kanghua Miao, Wenli Cao.
Three new compounds based on 4,4′-azo-1,2,4-triazol-5-one: Synthesis, crystal structure and thermal properties.
Chemical Research in Chinese Universities, 2016, 32(5): 812-817 DOI:10.1007/s40242-016-6114-6
| [1] |
Izsák D., Klapötke T. M., Reuter S. Eur. J. Inorg. Chem., 2013, 32: 5641.
|
| [2] |
Zhang Y. Q., Parrishb D. A., Shreeve J. M. J. Mater. Chem., 2012, 22: 12659.
|
| [3] |
Thottempudi V., Gao H., Shreeve J. M. J. Am. Chem. Soc., 2011, 133: 6464.
|
| [4] |
Klapötke T. M., Petermayer C., Piercey D. G., Stierstorfer J. J. Am. Chem. Soc., 2012, 134: 20827.
|
| [5] |
Xu K. Z., Wang M., Zhang H., Yan B., Song J. R., Wang B. Z., Zhao F. Q. Chin. J. Chem., 2011, 29(11): 2293.
|
| [6] |
Paraskos A. J., Cooke E. D., Caflin K. C. Propellants Explos. Pyrotech., 2015, 40(1): 46.
|
| [7] |
Zhang Y. Q., Parrishb D. A., Shreeve J. M. J. Mater. Chem. A, 2013, 1: 585.
|
| [8] |
Li Z. N., Ma H. X., Yan B., Guan Y. L., Song J. R. Chin. J. Chem., 2009, 27(11): 2284.
|
| [9] |
Yin P., Parrish D. A., Shreeve J. M. Angew. Chem. Int. Ed., 2014, 53(47): 12889.
|
| [10] |
Han Z. Y., Zhao Z. H., Du Z. M., He C. L., Zhao S. X., Cong M. RSC Adv., 2014, 4: 33724.
|
| [11] |
Gao H., Shreeve J. M. Chem. Rev., 2011, 111: 7377.
|
| [12] |
Tong W. C., Zhang R., Xue L. J., Xue R., Zhang L. N., Zhang T. L., Yang L. Z. Angorg. Allg. Chem., 2015, 641(7): 1225.
|
| [13] |
Ren X. L., Zuo X. G., Xu K. Z., Ren Y. H., Huang J., Song J. R., Wang B. Z., Zhao F. Q. Bull. Korean Chem. Soc., 2011, 32(7): 2267.
|
| [14] |
Dippold A., Klapötke T. M., Martin F. A. Z. Angorg. Allg. Chem., 2011, 637(9): 1181.
|
| [15] |
Fournier D., Halasz A., Spain J. R., Spanggord J., Bottaro J. C., Hawari J. Appl. Environ. Microbiol., 2004, 70: 1123.
|
| [16] |
Huber S., Izsak D., Karaghiosoff K., Klapötke T. M., Reuter S. Propellants Explos. Pyrotech., 2014, 39(6): 793.
|
| [17] |
Thottempudi V., Forohor F., Parrish D. A., Shreeve J. M. Angew. Chem. Int. Ed., 2012, 51(39): 9881.
|
| [18] |
Keshavarz M. H., Esmailpour K., Zamani M., Roknabadi A. G. Propellants Explos. Pyrotech., 2015, 40(6): 886.
|
| [19] |
Klapötke T. M., Piercey D. G., Stierstorfer J. Eur. J. Inorg. Chem., 2013, 9: 1509.
|
| [20] |
Xu C. X., Zhang J. G., Yin X., Jin X., Li T., Zhang T. L. J. Solid State Chem., 2015, 226: 59.
|
| [21] |
Nimesh S., Ang H. G. Propellants Explos. Pyrotech., 2015, 40(3): 426.
|
| [22] |
Liu B., Yang T. Y., Feng H. J., Zhang Z. H., Xu L. J. Solid State Chem., 2015, 230: 90.
|
| [23] |
Joas M., Kießling S., Klapötke T. M., Schmid P. C., Stierstorfer J. Z. Anorg. Allg. Chem., 2014, 640(14): 2759.
|
| [24] |
Sivabalan R., Talawar M. B., Senthilkumar N., Kavitha B., Asthana S. N. J. Therm. Anal. Calorim., 2004, 78(3): 781.
|
| [25] |
Kroeger C. F., Hummel L., Mutscher M., Beyer H. Berichte der Deutschen Chemische Gcsellschaft, 1965, 98: 3025.
|
| [26] |
Sivabalan R., Anniyappan M., Pawar S. J., Talawar M. B., Gore G. M., Venugopalan S., Gandhe B. R. J. Hazard. Mater., 2006, 137: 672.
|
| [27] |
Ma C., Huang J., Ma H. X., Xu K. Z., Lv X. Q., Song J. R., Zhao N. N., He J. Y., Zhao Y. S. J. Mol. Struct., 2013, 1036: 521.
|
| [28] |
Zhong Y. T., Huang J., Song J. R., Xu K. Z., Zhao D., Wang L. Q., Zhang X. Y. Chin. J. Chem., 2011, 29(8): 1672.
|
| [29] |
Ma C., Huang J., Zhong Y. T., Xu K. Z., Song J. R., Zhang Z. Bull. Korean Chem. Soc., 2013, 34(7): 2086.
|
| [30] |
Sheldrick G. M. Acta Cryst. C, 2015, 71(1): 3.
|
| [31] |
Dolomanov O. V., Bourhis L. J., Gildea R. J., Howar J. A. K., Puschmann H. J. Appl. Crystallogr., 2009, 42(2): 339.
|
| [32] |
Kissinger H. E. Anal. Chem., 1957, 29: 1702.
|
| [33] |
Ozawa T. Bull. Chem. Soc. Jpn., 1965, 38: 1881.
|
| [34] |
Yi J. H., Zhao F. Q., Hong W. L., Xu S. Y., Hu R. Z., Chen Z. Q., Zhang L. Y. J. Hazard. Mater., 2010, 176: 257.
|
| [35] |
Yi J. H., Zhao F. Q., Wang B. Z., Liu Q., Zhou C., Hu R. Z., Ren Y. H., Xu S. Y., Xu K. Z., Ren X. N. J. Hazard. Mater., 2010, 181: 432.
|
| [36] |
Atkins P., Paula J. D. Atkins’ Physical Chemistry, 2006, Beijing: High Education Press.
|
| [37] |
Cox J. D. J. Chem. Thermodyn., 1978, 10(10): 903.
|
| [38] |
Radacsi N., Bouma R. H., Haye E. L., Horst J. H., Stankiewicz A. I., Heijden A. E. Propellants Explos. Pyrotech., 2013, 38(6): 761.
|
| [39] |
Zhang Y., Sun Q., Xu K. Z., Song J. R., Zhao F. Q. Propellants Explos. Pyrotech., 2016, 41(1): 35.
|