Carbon-covered tungsten carbide nanoparticles: Solid-state synthesis and application as stable electrocatalysts for the hydrogen evolution reaction

Xuena Zhang , Xinwen Zhong , Zhe Yang , Jiapeng Song , Haiyan Lu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1016 -1018.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1016 -1018. DOI: 10.1007/s40242-016-6107-5
Article

Carbon-covered tungsten carbide nanoparticles: Solid-state synthesis and application as stable electrocatalysts for the hydrogen evolution reaction

Author information +
History +
PDF

Abstract

Carbon-covered tungsten carbide nanoparticles(cc-WCNPs) were prepared via a one-step solid-state reaction between W(CO)6 and triphenylamine at 850 °C under a sealed Ar atmosphere. As novel electrocatalysts for the hydrogen evolution reaction(HER), cc-WCNPs exhibit an onset potential of–0.14 V vs. reversible hydrogen electrode(RHE) and a Tafel slope of 64.6 mV/dec in a 0.5 mol/L H2SO4 solution. Additionally, these cc-WCNPs catalysts also show excellent electrocatalytic stability after 1000 cycles.

Keywords

Hydrogen evolution reaction / Solid-state synthesis / Nanoparticle / Electrocatalysis

Cite this article

Download citation ▾
Xuena Zhang, Xinwen Zhong, Zhe Yang, Jiapeng Song, Haiyan Lu. Carbon-covered tungsten carbide nanoparticles: Solid-state synthesis and application as stable electrocatalysts for the hydrogen evolution reaction. Chemical Research in Chinese Universities, 2016, 32(6): 1016-1018 DOI:10.1007/s40242-016-6107-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Walter M. G., Warren E. L., McKone J. R., Boettcher S. W., Mi Q., Santori E. A., Lewis N. S. Chem. Rev., 2010, 110: 6446.

[2]

Norskov J. K., Christensen C. H. Science, 2006, 312: 1322.

[3]

Goff A. L., Artero V., Jousselme B., Tran P. D., Guillet N., Metaye R., Fihri A., Palacin S., Fontecave M. Science, 2009, 326: 1384.

[4]

Xu Y., Gao M., Zheng Y., Jiang J., Yu S. Angew. Chem. Int. Ed., 2013, 52: 8546.

[5]

Xie J., Zhang H., Li S., Wang R., Sun X., Zhou M., Zhou J., Lou X., Xie Y. Adv. Mater., 2013, 25: 5807.

[6]

Furimsky E. Appl. Catal. A, 2003, 240: 1.

[7]

Chen W., Muckerman J. T., Fujita E. Chem. Commun., 2013, 49: 8896.

[8]

Ham D. J., Ganesan R., Lee J. S. Int. J. Hydrogem Energ., 2008, 33: 6865.

[9]

Liu Y., Mustain W. E. Int. J. Hydrogem Energ., 2012, 37: 8929.

[10]

Morishita T., Soneda Y., Hatori H., Inagaki M. Electrochim. Acta, 2007, 52(7): 2478.

[11]

Weigert E. C., Stottlemyer A. L., Zellner M. B., Chen J. G. J. Phys. Chem. C, 2007, 111(40): 14617.

[12]

Su C. Y., Andrea M. G., Mark D. S., Pellechia P. J., Loye H. C. J. Am. Chem. Soc., 2004, 126(11): 3576.

[13]

Xia M., Yan Q., Guo H., Lang S., Ge C. J. Appl. Phys., 2014, 115(18): 184307.

[14]

Chen W., Wang C., Sasaki K., Marinkovic N., Xu W., Muckerman J. T., Zhu Y., Fujita E. Energ. Envron. Sci., 2013, 6: 943.

[15]

Zhao Y., Kamiya K., Hashimoto K., Nakanishi S. Angew. Chem. Int. Ed., 2013, 52: 13641.

[16]

Alhajri N. S. H., Yoshida H., Anjum D. H., Garcia-Esparza A. T., Kubota J., Domen K., Takanabe K. J. Mater. Chem. A, 2013, 1: 12606.

[17]

Nikiforov A. V., Petrushina I. M., Christensen E., Alexeev N. V., Samokhind A. V., Bjerrum N. J. Int. J. Hydrogem Energ., 2012, 37: 18591.

[18]

Sheng W., Thomason H. A. J. Electrochem. Soc., 2010, 157: B1529.

[19]

Singla G., Singh K., Pandey O. P. Int. J. Hydrogen Energy, 2015, 40: 5628.

AI Summary AI Mindmap
PDF

134

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/