Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution

Yong Han , Lilan Zhu , Yuyan Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 641 -646.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 641 -646. DOI: 10.1007/s40242-016-6106-6
Article

Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution

Author information +
History +
PDF

Abstract

Non-equilibrium molecular dynamics(MD) simulations were performed according to the electronic anti-fouling technology, and some structural parameters and dynamic parameters of CaCl2 aqueous solution were taken as indicators to compare the different effect on the anti-fouling performance by applying different electric fields. The results show that electric fields can effectively decrease the viscosity of CaCl2 aqueous solution and enhance the ionic activity by enlarging the self-diffusion coefficient. In addition, with the same electric field strength, the electrostatic field is more effective at decreasing the viscosity of CaCl2 aqueous solution and increasing the self-diffusion coefficient of water molecules, while the alternating electric field is more effective at increasing the self-diffusion coefficient of Ca2+. Furthermore, an alternating electric field with different frequencies was applied; the results show that an 800 kHz frequency is most effective to decrease the viscosity, and a 700 kHz frequency is most effective to enhance the self-diffusion coefficient of water molecule. Otherwise, 400 kHz is most effective to enhance the self-diffusion coefficient of Ca2+. Additionally, by studying the change of structure parameters, it was concluded that an external electric field can enhance the hydration between Ca2+ and coordinated water molecules, and the alternating electric field is more effective in this respect.

Keywords

Electronic anti-fouling(EAF) / Molecular dynamics(MD) simulation / Viscosity / Self-diffusion coefficient / Structure parameter

Cite this article

Download citation ▾
Yong Han, Lilan Zhu, Yuyan Zhang. Molecular dynamics simulation for the impact of external electric fields on CaCl2 aqueous solution. Chemical Research in Chinese Universities, 2016, 32(4): 641-646 DOI:10.1007/s40242-016-6106-6

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Steinhagen R., Müller-Steinhagen H., Maani K. Heat. Transfer. Eng., 1993, 14(1): 811.

[2]

Chen C., Liu R. Science Technology and Engineering, 2009, 15(9): 4567.

[3]

Ge H., Wei C. Acta Chimica Sinica, 2011, 69(19): 2313.

[4]

Xing X., Jing D. Journal of Engineering for Thermal Energy and Power, 2007, 22(3): 336.

[5]

Cho Y. I., Liu R. Int. J. Heat. Transfer. Eng., 1999, 42: 3037.

[6]

Xing X., Ma C., Chen Y. Chem. Eng. Technol., 2005, 28(12): 1540.

[7]

Zhao G., Liu J., Zhou L., Han K. J. Phys. Chem. B, 2007, 111(30): 8940.

[8]

Zhao G., Han K. Accounts, Chem. Res., 2012, 45(3): 404.

[9]

Chen J., Yuan M., Wang J., Yang Y., Chu T. J. Phys. Chem. A, 2014, 118(39): 8986.

[10]

Yamaguchi T., Hayashi S., Ohtaki H. Inorg. Chem., 1989, 28(12): 2434.

[11]

Probst M. M., Radnai T., Heinzinger K., Bopp P., Rode B. M. J. Phys. Chem., 1985, 89(5): 753.

[12]

Hewish N. A., Neilson G. W., Enderby J. E. Nature, 1982, 297: 138.

[13]

Fulton J. L., Chen Y., Heald S. M., Balasubramanian M. J. Chem. Phys., 2006, 125(9): 094507.

[14]

Licheri G., Piccaluga G., Pinna G. J. Chem. Phys., 1976, 64: 2437.

[15]

Marcus Y. Chem. Rev., 1998, 88: 1475.

[16]

Hess B., Kutzner C., van der Spoel D., Lindahl E. J. Chem. Theory Comput., 2008, 4(3): 435.

[17]

Chialvo A. A., Simonson J. M. J. Chem. Phys., 2003, 119(15): 8052.

[18]

Li M., Duan Z., Zhang Z., Zhang C., Weare J. Mol. Phys., 2008, 106(24): 2685.

[19]

Gunsteren W. F. V. Biomolecular Simulation: the GROMOS96 Manual and User Guide, 1996.

[20]

Allen M. P., Tildesley D. J. Computer Simulation of Liquids, 1989, Oxford: Clarendon Press.

[21]

Han Y., Zhao Y., Chai X., Liu X. Electr. Mach. Contrl., 2011, 15(9): 31.

[22]

Hertz H. G., Mills R. J. Phys. Chem., 1978, 82(8): 952.

[23]

Han Y., Zhao Y. Int. J. Electrochem. Sci., 2012, 7(10): 10008.

[24]

Hess B. J. Chem. Phys., 2002, 116: 209.

[25]

Ding K. Journal of Hebei University of Engineering(Natural Science Edition), 2010, 27(3): 14.

[26]

Darden T., York D., Pedersen L. J. Chem. Phys., 1993, 98: 10089.

[27]

Le D. T., Ren F., Zhang M. J. Heat. Mass. Transf., 2010, 53(s7/8): 1426.

AI Summary AI Mindmap
PDF

156

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/