Garlic root biomass as novel biosorbents for malachite green removal: Parameter optimization, process kinetics and toxicity test

Hejun Ren , Ruonan Zhang , Qiaochu Wang , Hongyu Pan , Yan Wang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 647 -654.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 647 -654. DOI: 10.1007/s40242-016-6095-5
Article

Garlic root biomass as novel biosorbents for malachite green removal: Parameter optimization, process kinetics and toxicity test

Author information +
History +
PDF

Abstract

The potential of the agricultural waste garlic root to remove malachite green(MG) from aqueous solutions was evaluated. The adsorption of this dye onto garlic root was confirmed by means of Fourier transform infrared analysis(FTIR) and scanning electron microscopy(SEM). The equilibrium data fitted well into the Langmuir model(R 2>0.99), and the adsorption kinetics followed the pseudo-second-order equation(R 2>0.99). The maximum adsorption capacities of MG onto the adsorbent were 172.41 and 232.56 mg/g with the addition of 1 and 2 g/L garlic root, respectively. The optimal conditions for MG removal were established on the basis of orthogonal experiments(OA16 matrix). The concentrations of both MG and garlic root significantly affected the removal efficiency. The acute toxicity test indicated that the treated MG solutions were less toxic than the parent solutions. These results suggest that garlic root is a potential low-cost adsorbent for removing dye from industrial wastewater.

Keywords

Garlic root / Malachite green / Adsorption / Toxicity test / Wastewater

Cite this article

Download citation ▾
Hejun Ren, Ruonan Zhang, Qiaochu Wang, Hongyu Pan, Yan Wang. Garlic root biomass as novel biosorbents for malachite green removal: Parameter optimization, process kinetics and toxicity test. Chemical Research in Chinese Universities, 2016, 32(4): 647-654 DOI:10.1007/s40242-016-6095-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kumar K.V., Sivanesan S., Ramamurthi V. Process Biochem., 2005, 40: 2865.

[2]

Gupta V. K., Mitta A., Krishnan L., Gajbe V. Sep. Purif. Technol., 2004, 40: 87.

[3]

Pierrard M. A., Kestemont P., Delaive E., Dieu M., Raes M., Silvestre F. Aquat. Toxicol., 2012, 114: 142.

[4]

Rao K. V. K. Toxicol. Lett., 1995, 81: 107.

[5]

Chen Z. S., Deng H. B., Chen C., Yang Y., Xu H. J. Environ. Health Sci. Eng., 2014, 12: 63.

[6]

Bekc Z., Sek Y., Cavas L. J. Hazard. Mater., 2009, 161: 1454.

[7]

Chakravarty S., Mohanty A., Sudha T. N., Upadhyay A., Konar J., Sircar J., Madhukar A., Gupta K. J. Hazard. Mater., 2010, 173: 502.

[8]

Hameed B. H., Ahmad A. A. J. Hazard. Mater., 2009, 164: 870.

[9]

Ahmad A. A., Hameed B. H., Aziz N. J. Hazard. Mater., 2007, 141: 70.

[10]

Hasan M., Ahmad A. L., Hameed B. H. Chem. Eng. J., 2008, 136: 164.

[11]

Hameed B. H., Mahmoud D. K., Ahmad A. L. Colloids and Surfaces Physicochem. Eng. Aspects, 2008, 316: 78.

[12]

Osma J. F., Saravia V., Toca-Herrera J. L., Couto S. R. J. Hazard. Mater., 2007, 147: 900.

[13]

Gupta V. K., Jain R., Varshney S., Saini V. K. J. Colloid Interf. Sci., 2007, 307: 326.

[14]

Hu Z. H., Chen H., Ji F., Yuan S. J. J. Hazard. Mater., 2010, 173: 292.

[15]

Jakubowski H. Nutrition, 2003, 19(2): 167.

[16]

Wang Y., Zhang J. X., Ren H. J., Wang Y., Pan H. Y., Zhang L.Y. Appl. Microbiol. Biotechnol., 2015, 99: 3629.

[17]

Wanyonyi W. C., Onyari J. M., Shiundu P. M. Energy Procedia, 2014, 50: 862.

[18]

Haghseresht F., Lu G. Energy Fuels, 1998, 12: 1100.

[19]

Angelini V. A., Orejas J., Medina M. I., Agostini E. J Hazard. Mater., 2011, 185: 269.

[20]

Barrena R., Casals E., Colón J., Font X., Sánchez A., Puntes V. Chemosphere, 2009, 75: 850.

[21]

Egger S., Lehmann R. P., Height M. J., Loessner M. J., Schuppler M. Appl. Environ. Microbiol., 2009, 75: 2973.

[22]

Quillard S., Lowm G., Buisson J. P., Boyer M., Lapkowski M. Synthetic Met., 1997, 84: 805.

[23]

Renugadev T. S., Gayathri S. Int. J. Pharm. Sci. Rev. Res., 2010, 2(2): 106.

[24]

Mestre A. S., Bexiga A. S., Proença M., Andrade M., Pinto M. L., Matos I., Fonseca I. M., Carvalho A. P. Bioresour. Technol., 2011, 102: 8253.

[25]

Allen S. J., Gan Q., Matthews R. J. Colloid Interface Sci., 2005, 286: 101.

[26]

Wang H. L., Zhao Y., Ma L. K., Fan P. H., Xu C. H., Jiao C. L., Lin A. J. Chem. J. Chinese Universities, 2016, 37(2): 335.

[27]

Poots V. J. P., McKay G., Healy J. J. J. Water Pollut. Control Fed., 1978, 50: 926.

[28]

Vimonses V., Lei S. M., Jin B., Chow C.W. K., Saint C. Chem. Eng. J., 2009, 148: 354.

[29]

Chiou M. S., Li H. Y. Chemosphere, 2003, 50: 1095.

[30]

Zhang J., Li Y., Zhang C. L., Jing Y. M. J. Hazard. Mater., 2008, 150: 774.

[31]

Oladoja N. A., Aboluwoye C. O., Oladimeji Y. B., Ashogbon A. O., Otemuyiwa I. O. Desalination, 2008, 227: 190.

[32]

Basar C. A. J. Hazard. Mater., 2006, 135: 232.

[33]

Baek M. H., Ijagbemi C. O., Se-Jin O., Kim D. S. J. Hazard. Mater., 2010, 176: 820.

[34]

Chen C. H., Chang C. F., Liu S. M. J. Hazard. Mater., 2010, 177: 281.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/