Fabrication and photocatalytic properties of water-stable Ag/PW12/PVA nanocomposites

Chunhong Sui , Zhaoyi Wang , Cheng Wang , Guangdong Zhou , Tiexin Cheng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 854 -861.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 854 -861. DOI: 10.1007/s40242-016-6088-4
Article

Fabrication and photocatalytic properties of water-stable Ag/PW12/PVA nanocomposites

Author information +
History +
PDF

Abstract

A kind of water-stable phosphotungstic acid/polyvinyl alcohol(PW12/PVA) fiber was prepared by thermal or chemical crosslinking treatments with the help of electrospinning, and silver nanoparticles(NPs) modified fibrous precursor was successfully obtained by photoreduced method. The nanocomposites were characterized by transformation infrared spectroscopy(FTIR), UV-Vis diffuse reflection spectroscopy(DRS), field environmental scanning electron microscopy(FE-SEM), transmission electron microscopy(TEM) and X-ray photoelectron spectroscopy(XPS). The results indicate that the sizes of silver NPs are about 20 or 40 nm on thermally or glutaraldehyde(GA) vapor crosslinked PW12/PVA fiber, respectively. As a photocatalyst, PW12/PVA fiber possesses high surface area to volume ratio, stable recyclability, and efficient transportation of electrons under visible light. The nanohybrids exhibit excellent photocatalytic activity for the degradation of Rhodamin B than PW12/PVA nanofiber.

Keywords

Electrospinning / Phosphotungstic acid / Silver nanoparticle / Photocatalytic activity

Cite this article

Download citation ▾
Chunhong Sui, Zhaoyi Wang, Cheng Wang, Guangdong Zhou, Tiexin Cheng. Fabrication and photocatalytic properties of water-stable Ag/PW12/PVA nanocomposites. Chemical Research in Chinese Universities, 2016, 32(5): 854-861 DOI:10.1007/s40242-016-6088-4

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Long D. L., Burkholder E., Cronin L. Chem. Soc. Rev., 2007, 36: 105.

[2]

Pope M. T. Heteropoly and Isopoly Oxometalates, 1983

[3]

Clement-Jane J. M., Coronado E. Coordin. Chem. Rev., 1999, 193-195: 361.

[4]

Kozhevniko I. V., Matveev K. I. Appl. Cata., 1983, 5: 135.

[5]

Chen C., Wang Q., Lei P., Song W., Ma W., Zhao J. Environ. Sci. Technol., 2006, 40: 3965.

[6]

Frisesen D. A., Morello L., Headley J. V., Langford C. H. J. Photochem. Photobiol. A: Chem., 2000, 133: 213.

[7]

Keita B., Liu T., Nadjo L. J. Mater. Chem., 2009, 19: 19.

[8]

Zhang L., Shen Y. H., Xie A. J., Li S. K., Wang C. J. Mater. Chem., 2008, 18: 1196.

[9]

Hiskia A., Mylonas A., Papaconstantinou E. Chem. Soc. Rev., 2001, 30: 62.

[10]

Fujishima A., Zhang X., Tryk D. A. Surf. Sci. Rep., 2008, 63: 515.

[11]

Li S. W., Yu X. L., Zhang G. J., Ma Y., Yao J. N., Keita B., Louisc N., Zhao H. J. Mater. Chem., 2011, 21: 2282.

[12]

Zhou W. H., Cao M. H., Li N., Su S. Y., Zhao X. Y., Wang J. Q., Li X. H., Hu C. W. Mater. Res. Bull., 2013, 48: 2308.

[13]

Costa-Coquelard C., Schaming D., Lampre I., Ruhlmann L. Appl. Catal. B: Environ., 2008, 84: 835.

[14]

Liu S. X., Qu Z. P., Han X. W., Sun C. L. Cata. Today, 2004, 93-95: 877.

[15]

Sui C. H., Li C., Guo X. H., Cheng T. X., Gao Y. K., Zhou G. D., Gong J., Du J. S. Appl. Surf. Sci., 2012, 258: 7105.

[16]

Troupis A., Hiskia A., Papaconstantinou E. Appl. Catal. B: Environ., 2003, 42: 305.

[17]

Zhu Z. R., Tain R., Rhodes C. Can. J. Chem., 2003, 81: 1044.

[18]

Fang X., Ma H., Xiao S. L., Shen M. W., Guo R., Cao X. Y., Shi X. Y. J. Mater. Chem., 2011, 21: 4493.

[19]

Korchev A. S., Bozack M. J., Slaten B. L., Mills G. J. Am. Chem. Soc., 2004, 126: 10.

[20]

Troupis A., Gkika E., Hiskia A., Papaconstantinou E. C. R. Chimie., 2006, 9: 851.

[21]

Herring A. M., McCormick R. L. J. Phys. Chem. B, 1998, 102: 3175.

[22]

Yang G. C., Pan Y., Gao F. M., Gong J., Cui X. J., Shao C.L., Guo Y. H., Qu L. Y. Mater. Lett., 2005, 59: 450.

[23]

Wong K. K. H., Zinke-Allmang M., Wan W. J. Mater. Sci., 2010, 45: 2456.

[24]

Mansur H. S., Sadahira C. M., Souza A. N., Mansur A. A. P. Mate. Sci. Eng. C, 2008, 28: 539.

[25]

Ahmed F., Wang X. X., Boualili N., Xu H. L., Farha R., Goldmann M., Ruhlmann L. Appl. CataL. A: Gen., 2012, 447/448: 89.

[26]

Li L., Cheng M., Bai Y., An B., Dang D. Spectrochim. Acta A, 2015, 150: 846.

[27]

Slistan-Grijalv A., Herrera-Urbina R., Rivas-Silva J. F., Ávalos-Borja M., CastillÓn-Barraza F. F., Posada-Amarillas A. Physica. E, 2005, 27: 104.

[28]

Kim Y. I., Atherton S. J., Brigham E. S., Mallouk T. E. J. Phys. Chem., 1993, 97: 11802.

[29]

Kang S. Y., Kim K. Langmuir, 1998, 14: 226.

[30]

Hu X. G., Wang T., Qu X. H., Dong S. J. J. Phys. Chem. B, 2006, 110: 853.

[31]

Yildirm O. A., Unalan H. E., Durucan C. J. Am. Ceram. Soc., 2013, 96: 766.

[32]

Kodom T., Rusen E., Calinescu I., Mocanu A., Somoghi R., Dinescu A., Diacon A., Boscornea C. J. Nanomater, 2015, 2015: 1.

[33]

Guo Y. H., Hu C. W. J. Mol. Catal. A: Chem., 2007, 262: 136.

[34]

Chen Y., Chen D. L., Chen J. F., Lu Q. J., Zhang M., Liu B. T., Wang Q. Y., Wang Z. F. J. Alloy. Compd., 2015, 651: 114.

[35]

Li F., Wang G. Y., Zhang Y., Li H. R. Chem. J. Chinese Universities, 2015, 36(7): 1351.

[36]

Zhang L., Li Y. G., Zhang Q. H., Zhang H. Z. Appl. Surf. Sci., 2014, 319: 21.

[37]

Gao M. Y., Jiang D., Sun D. K., Hou B., Li D. B. Acta Chim. Sinica, 2014, 72: 1092.

AI Summary AI Mindmap
PDF

135

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/