Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations

Wenhua Yang , Wencai Lü , Xuyan Xue , Qingjun Zang , Caizhuang Wang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1028 -1033.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1028 -1033. DOI: 10.1007/s40242-016-6085-7
Article

Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations

Author information +
History +
PDF

Abstract

The optical properties of bare and hydrogen passivated Si220 nanoclusters(NCs) in four typical motifs(i.e., bulk-like, onion-like, bucky-diamond and icosahedral motifs) were studied via time-dependent density functional theory(TD-DFT) calculations. The calculation results show that there is a significant blue shift in the optical absorption spectra when the Si NCs are passivated with hydrogen. A strong absorption peak in the visible light region appears for the hydrogenated bulk-like, onion-like and bucky-diamond Si NCs.

Keywords

Si220 nanocluster / Optical property / Time-dependent density functional theory(TD-DFT)

Cite this article

Download citation ▾
Wenhua Yang, Wencai Lü, Xuyan Xue, Qingjun Zang, Caizhuang Wang. Studies on optical properties of Si220 nanoclusters via time-dependent density functional theory calculations. Chemical Research in Chinese Universities, 2016, 32(6): 1028-1033 DOI:10.1007/s40242-016-6085-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Kim S. K., Cho C. H., Kim B. H., Park S. J., Lee J. W. Appl. Phys. Lett., 2009, 95: 143120.

[2]

Fujio K., Fujii M., Sumida K., Hayashi S., Fujisawa M., Ohta H. Appl. Phys. Lett., 2008, 93: 021920.

[3]

Fujii M., Mimura A., Hayashi S., Yamamoto K. Appl. Phys. Lett., 1999, 75: 184.

[4]

He Y., Kang Z. H., Li Q. S., Tsang C. H. A., Fan C. H., Lee S. T. Angew. Chem. Int. Ed., 2008, 48: 128.

[5]

Yong K. T., Ding H., Roy L., Law W. C., Bergey E. J., Maitra A., Prasad P. N. ACS Nano, 2009, 3: 502.

[6]

Huang S., Banerjee S., Tung R. T., Oda S. J. Appl. Phys., 2003, 93: 576.

[7]

Hirscheman K. D., Tsybeskov L., Duttagupta S. P., Fauchet P. M. Nature, 1996, 384: 338.

[8]

Wang M. H., Li D. S., Yuan A., Yang D. R., Que D. L. Appl. Phys. Lett., 2007, 90: 131903.

[9]

He Y., Zhong Y. L., Peng F., Wei X. P., Su Y. Y., Lu Y. M., Su S., Qu W., Liao L. S., Lee S. T. J. Am. Chem. Soc., 2011, 133: 14192.

[10]

Erogbogbo F., Yong K. T., Roy I., Hu R., Law W. G., Zhao W., Ding H., Wu P., Kumar R., Swihart M. T., Prasad P. N. ACS Nano, 2011, 5: 413.

[11]

Baldwin R. K., Pettigrew K. A., Garno J. C., Power P. P., Liu G. Y., Kauzlarich S. M. J. Am. Chem. Soc., 2002, 124: 1150.

[12]

Wilcoxon J., Samara G., Provencio P. Phys. Rev. B: Condens. Mat-ter., 1999, 60: 2704.

[13]

Brongersma M. L., Kik P. G., Polman A. Appl. Phys. Lett., 2000, 76: 351.

[14]

Antonova I. V., Gulyaev M., Savir E., Jedrzejewski J., Balberg I. Phys. Rev. B: Condens. Matter., 2008, 77: 125318.

[15]

Sublemontier O., Lacour F., Leconte Y., Herlin-boime N., Reynaud C. J. Alloys. Compd., 2009, 483: 499.

[16]

Puzder A., Williamson A. J., Reboredo F. A., Galli G. Phys. Rev. Lett., 2003, 91: 157405.

[17]

Lu H. D., Zhao Y. J., Yang X. B., Xu H. Phys. Rev. B: Condens. Matter., 2012, 86: 085440.

[18]

Williamson A. J., Grossman J. C., Hood R. Q., Puzder A., Galli G. Phys. Rev. Lett., 2002, 89: 196803.

[19]

Li Z. F., Ruckenstein E. Nano Lett., 2004, 4: 1463.

[20]

Rosso-Vasic M., Spruijt E., van Lagen B., de Cola L., Zuilhof H. Small, 2008, 4: 1835.

[21]

Shiohara A., Hanada S., Prabakar S., Dujioka K., Lim T. H., Yama-moto K., Northcote P. T., Tilley R. D. J. Am. Chem. Soc., 2010, 132: 248.

[22]

Wolkin M. V., Jorne J., Fauchet P. M., Allan G., Delerue C. Phys. Rev. Lett., 1999, 82: 197.

[23]

Rechtsteiner G. A., Hampe O., Jarrold M. F. J. Phys. Chem. B, 2001, 105: 4188.

[24]

Zhou Z., Brus L., Friesner R. Nano Lett., 2003, 3: 163.

[25]

Qi W. H., Lee S. T. Chem. Phys. Lett., 2009, 483: 247.

[26]

Nishida M. Phys. Rev. B: Condens. Matter., 2004, 70: 113303.

[27]

Ma J., Wei S. H. Phys. Rev. B: Condens. Matter., 2013, 87: 115318.

[28]

Khoo K. H., Zayak A. T., Kwak H., Chelikowsky J. R. Phys. Rev. Let., 2010, 105: 115504.

[29]

Khoo K. H., Chelikowsky J. R. Phys Rev B: Condens. Matter., 2014, 89: 195309.

[30]

Pi X. D., Delerue C. Phys. Rev. Lett., 2013, 111: 177402.

[31]

Zhou S., Pi X. D., Ni Z. Y., Ding Y., Jiang Y. Y., Jin C. H., Delerue C., Yang D., Nozaki T. ACS Nano, 2015, 9: 378.

[32]

Rowe D. J., Jeong J. S., Mkhoyan K. A., Kortshagen U. R. Nano Lett., 2013, 13: 1317.

[33]

Yang W. H., Lu W. C., Wang C. Z., Ho K. M. J. Phys. Chem. C, 2016, 120: 1966.

[34]

Vanderbilt D. Phys. Rev. B: Condens. Matter., 1990, 41: 7892.

[35]

Milman V., Winkler B., White J. A., Pickard C. J., Payne M. C., Akhmatskaya E. V., Nobes R. H. Int. J. Quantum Chem., 2000, 77: 895.

[36]

Payne M. C., Teter M. P., Allan D. C., Arias T. A., Joannopoulos J. D. Rev. Mod. Phys., 1992, 64: 1045.

[37]

Perdew J. P., Burke K., Ernzerhof M. Phys. Rev. Let., 1996, 77: 3865.

[38]

Weissker H. C., Furthmuller J., Bechstedt F. Phys. Rev. B: Condens. Matter., 2004, 69: 115310.

[39]

Furukawa S., Miyasato T. Phys. Rev. B: Condens. Matter., 1988, 38: 57266.

[40]

Benedict L. X., Puzder A., Williamson A. J., Grossman J. C., Galli G., Klepeis J. E., Raty J. Y., Pankratov O. Phys. Rev. B: Condens. Matter., 2003, 68: 085310.

[41]

Ramos L. E., Paler J., Kresse G., Bechetedt F. Phys. Rev. B: Condens. Matter., 2008, 78: 195423.

[42]

Ni Z. Y., Pi X. D., Yang D. R. Phys. Rev. B: Condens. Matter., 2014, 89: 035312.

[43]

Vasiliev I., Ogut S., Chelikowsky J. R. Phys. Rev. Lett., 2001, 86: 1813.

[44]

Delley B., Steigmeier E. F. Phys. Rev. B: Condens. Matter., 1992, 47: 1397.

[45]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A. Jr., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas, Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, Revision E.01, 2009, Wallingford CT: Gaussian Inc..

[46]

Lu W. C., Wang C. Z., Zhao L. Z., Qin W., Ho K. M. Phys. Rev. B: Condens. Matter., 2015, 92: 035206.

[47]

Wilcoxon J. P., Samara G., Provencio P. N. Phys. Rev. B: Condens. Matter., 1999, 60: 2704.

[48]

Sze S. M. Physics of Semiconductor Devices, 1969, New York: Wiley Interscience.

AI Summary AI Mindmap
PDF

117

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/