Electrochemical and quantum chemical studies of azoles as corrosion inhibitors for mild steel in hydrochloric acid

Weiwei Zhang , Rui Ma , Shuai Li , Yu Liu , Lin Niu

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 827 -837.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 827 -837. DOI: 10.1007/s40242-016-6084-8
Article

Electrochemical and quantum chemical studies of azoles as corrosion inhibitors for mild steel in hydrochloric acid

Author information +
History +
PDF

Abstract

The inhibition effect of three azole compounds, 2-aminobenzimidazole(ABM), 2-aminothiazole(AT) and 2-aminobenzothiazole(ABT), on the corrosion of mild steel in a 1 mol/L HCl solution was investigated by means of potentiodynamic polarization measurement, electrochemical impedance spectroscopy(EIS) and scanning electron microscopy( SEM). The correlation between inhibition efficiency and molecular structure of inhibitor was theoretically studied via quantum chemical calculations. The results show that the inhibition efficiency(η) of the inhibitors follows the order of η ABT>η AT>η ABM. Moreover, ABM, AT and ABT belong to mixed-type inhibitors. The adsorption of the inhibitors on the steel surface follows the Langmuir adsorption isotherm, with both physisorption and chemisorption.

Keywords

Mild steel / Corrosion inhibition / Polarization / Electrochemical impedance spectroscopy(EIS) / Scanning electron microscopy(SEM) / Quantum chemical study

Cite this article

Download citation ▾
Weiwei Zhang, Rui Ma, Shuai Li, Yu Liu, Lin Niu. Electrochemical and quantum chemical studies of azoles as corrosion inhibitors for mild steel in hydrochloric acid. Chemical Research in Chinese Universities, 2016, 32(5): 827-837 DOI:10.1007/s40242-016-6084-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Marcus P. Corrosion Mechanisms in Theory and Practice, 2012.

[2]

Cruz J., Garcia-Ochoa E., Castrob M. J. Electrochem. Soc., 2003, 150: 26.

[3]

Gomma G. K. Mater. Chem. Phys., 1998, 55: 241.

[4]

Khaled K. F. Electrochim. Acta, 2003, 48: 2493.

[5]

Prasadb I., Ahamada R., Quraishi M. A. Mater. Chem. Phys., 2010, 124: 1155.

[6]

Tang Y., Zhang F., Cao Z., Wu Z., Jing W. Corros. Sci., 2013, 74: 271.

[7]

Xu F., Duan J., Zhang S., Hou B. Mater. Lett., 2008, 62: 4072.

[8]

Bentiss F., Bouanis M., Mernari B., Traisnel M., Vezin H., Lagrenee M. Appl. Surf. Sci., 2007, 253: 3696.

[9]

Aljourani J., Raeissi K., Golozar M. A. Corros. Sci., 2009, 51: 1836.

[10]

Mahdavian M., Ashhari S. Electrochim. Acta, 2010, 55: 1720.

[11]

Döner A., Solmaz R., Özcan M., Kardas G. Corros. Sci., 2011, 53: 2902.

[12]

Bentiss F., Traisnel M., Gengembre L., Lagrenée M. Appl. Surf. Sci., 1999, 152: 237.

[13]

El Ashry E. S. H., El Nemr A., Esawy S. A., Ragab S. Electrochim. Acta, 2006, 51: 3957.

[14]

Danaee I., Gholami M., RashvandAvei M., Maddahy M. H. J. Ind. Eng. Chem., 2015, 26: 81.

[15]

Kabanda M. M., Murulana L. C., Ozcan M., Ebenso E. E. Int. J. Electrochem. Sci., 2012, 7: 5035.

[16]

Frisch M. J., Trucks G. W., Schlegel H. B., Scuseria G. E., Robb M. A., Cheeseman J. R., Scalmani G., Barone V., Mennucci B., Petersson G. A., Nakatsuji H., Caricato M., Li X., Hratchian H. P., Izmaylov A. F., Bloino J., Zheng G., Sonnenberg J. L., Hada M., Ehara M., Toyota K., Fukuda R., Hasegawa J., Ishida M., Nakajima T., Honda Y., Kitao O., Nakai H., Vreven T., Montgomery J. A., Peralta J. E., Ogliaro F., Bearpark M., Heyd J. J., Brothers E., Kudin K. N., Staroverov V. N., Keith T., Kobayashi R., Normand J., Raghavachari K., Rendell A., Burant J. C., Iyengar S. S., Tomasi J., Cossi M., Rega N., Millam J. M., Klene M., Knox J. E., Cross J. B., Bakken V., Adamo C., Jaramillo J., Gomperts R., Stratmann R. E., Yazyev O., Austin A. J., Cammi R., Pomelli C., Ochterski J. W., Martin R. L., Morokuma K., Zakrzewski V. G., Voth G. A., Salvador P., Dannenberg J. J., Dapprich S., Daniels A. D., Farkas O., Foresman J. B., Ortiz J. V., Cioslowski J., Fox D. J. Gaussian 09, 2013.

[17]

Lee C., Yang W., Parr R. G. Phsy. Rev. B, 1988, 37: 785.

[18]

Klamt A. J. Chem. Soc. Perken Trans., 1993, 2: 799.

[19]

Lopez D. A., Simison S. N., Sanchez S. R. Electrochim. Acta, 2003, 48: 845.

[20]

Bentiss F., Lebrini M., Vezin H., Lagrenée M. Mater. Chem. Phys., 2004, 87: 18.

[21]

Afia L., Salghi R., Bammou L., Bazzi L.h., Hammouti B., Bazzi L. Acta Metall. Sin.(Engl. Lett.), 2012, 25: 10.

[22]

Muthukrishnan P., Jeyaprabha B., Prakash P. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 416.

[23]

Allachi H., Chaouket F., Draoui K. J. Alloy Compd., 2009, 475: 300.

[24]

Macdonald J. R., Johanson W. B. Theory in Impedance Spectroscopy, 1987.

[25]

Wang C., Jiang B., Liu M., Ge Y. J. Alloy Compd., 2015, 621: 53.

[26]

Growcock F. B., Jasinski R. J. J. Electrochem. Soc., 1989, 136: 2310.

[27]

Krishnaveni K., Ravichandran J., Selvaraj A. Acta Metall. Sin.(Engl. Lett.), 2013, 26: 321.

[28]

Wang X., Yang H., Wang F. Corros. Sci., 2011, 53: 113.

[29]

Solmaz R., Kardas G., Yazici B., Erbil M. Colloids Surf. A, 2008, 312: 7.

[30]

Maleki B., Davoodi A., Azghandi M. V., Baghayeri M., Akbarzadeh E., Veisi H., Ashrafi S. S., Raei M. New J. Chem., 2016, 40: 1278.

[31]

Xu F., Hou B. Acta Metall. Sin.(Engl. Lett.), 2009, 22: 247.

[32]

Jyothi S., Ravichandran J. Acta Metall. Sin.(Engl. Lett.), 2014, 27: 969.

[33]

Parr R. G., Yang W. J. Am. Chem. Soc., 1984, 106: 4049.

[34]

Gece G. Corros. Sci., 2008, 50: 2981.

[35]

Li W., He Q., Pei C., Hou B. Electrochim. Acta, 2007, 52: 6386.

[36]

Tang Y., Cao Z., Cang H., Xu J., Lu G., Jing W. Corros. Sci., 2014, 83: 292.

[37]

Yüce A. O., Mert B. D., Kardas G., Yazici B. Corros. Sci., 2014, 83: 310.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/