Charge carrier dynamics in PDPP-F/PCBM heterojunction solar cells

Peng Zhang , Mingrui Tan , Ning Sui , Yinghui Wang , Chunlin Tian , Hanzhuang Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1034 -1037.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1034 -1037. DOI: 10.1007/s40242-016-6083-9
Article

Charge carrier dynamics in PDPP-F/PCBM heterojunction solar cells

Author information +
History +
PDF

Abstract

The morphology dependent of migration and recombination kinetics of charge carriers in the polymer solar cell based on poly {2,7′-9,9-dioctylfluorene-alt-5-diethylhexyl-3,6-bis(5-bromothiophen-2-yl)pyrrolo[3,4-c]-pyrrole-1,4-dione}(PDPP-F) was investigated with photo-induced charge carrier extraction by linearly increasing voltage technique. The recombination coefficient of charge carriers decreased and the mobility of charge carriers increased, after the mass ratio of [6,6]-phenyl-C61-butyric acid methyl ester(PCBM) increased from 3:2 to 2:1. Meanwhile, both of them were sensitive to the applied electric field and could be together responsible for the improvement of voltage performance of polymer solar cell.

Keywords

Solar cell / Bulk-heterojunction / Charge carrier transport / Charge carrier recombination

Cite this article

Download citation ▾
Peng Zhang, Mingrui Tan, Ning Sui, Yinghui Wang, Chunlin Tian, Hanzhuang Zhang. Charge carrier dynamics in PDPP-F/PCBM heterojunction solar cells. Chemical Research in Chinese Universities, 2016, 32(6): 1034-1037 DOI:10.1007/s40242-016-6083-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

He Z. C., Zhong C. M., Su S. J., Xu M., Wu H. B., Cao Y. Nat. Photon., 2012, 6: 591.

[2]

Muhlbacher D., Scharber M., Morana M., Zhang Z. G., Waller D., Gaudiana R., Brabec C. Adv. Mater., 2006, 18: 2884.

[3]

Peet J., Kim J. Y., Coates N. E., Ma W. L., Moses D., Heeger A. J., Bazan G. C. Nat. Mater., 2007, 6: 497.

[4]

Hou J. H., Chen H. Y., Zhang S. Q., Li G., Yang Y. J. Am. Chem. Soc., 2008, 130: 16144.

[5]

Liang Y. Y., Xu Z., Xia J. B., Tsai S. T., Wu Y., Li G., Ray C., Yu L. P. Adv. Ener. Mater., 2010, 22: E135.

[6]

Li Y. F. Acc. Chem. Res., 2012, 45: 723.

[7]

Huo L. J., Hou J. H., Chen H. Y., Zhang S. Q., Jiang Y., Chen T. L., Yang Y. Macromolecules, 2009, 42: 6564.

[8]

Wang Y. H., Zou L., Kang Z. H., Qian C., Ma Y. G., Zhang H. Z. Appl. Phys. Lett., 2013, 103: 073902.

[9]

Mozer A. J., Dennler G., Sariciftci N. S., Westerling M., Pivrikas A., Österbacka R., Juška G. Phys. Rev. B, 2005, 72: 035217.

[10]

Juška G., Viliünas M., Arlauskas K., Nekrasas N., Wyrsch N., Feitk-necht L. J. Appl. Phys., 2001, 89: 4971.

[11]

Clark J., Silva C., Friend R. H., Spano F. C. Phys. Rev. Lett., 2007, 98: 206406.

[12]

Ho P. K. H., Chua L. L., Dipankar M., Gao X. Y., Qi D. C., Wee A. T. S., Chang J. F., Friend R. H. Adv. Mater., 2007, 19: 215.

[13]

Maurano A., Shuttle C. G., Hamilton R., Ballantyne A. M., Nelson J., Zhang W. M., Heeney M., Durrant J. R. J. Phys. Chem. C, 2011, 115: 5947.

[14]

Kim J. Y., Qin Y., Stevens D. M., Kalihari V., Hillmyer M. A., Frisbie C. D. J. Phys. Chem. C, 2009, 113: 21928.

[15]

Nelson J. Phys. Rev. B, 2003, 67: 155209.

AI Summary AI Mindmap
PDF

138

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/