Multicolor photoluminescence in ITQ-16 zeolite film

Yanli Chen , Xinglong Dong , Zhenyu Zhang , Lai Feng

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 713 -718.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 713 -718. DOI: 10.1007/s40242-016-6079-5
Article

Multicolor photoluminescence in ITQ-16 zeolite film

Author information +
History +
PDF

Abstract

Exploring the native defects of zeolites is highly important for understanding the properties of zeolites, such as catalysis and optics. Here, ITQ-16 films were prepared via the secondary growth method in the presence of Ge atoms. Various intrinsic defects of ITQ-16 films were fully studied through photoluminescence and FTIR characterizations. It was found that both the as-synthesized and calcined ITQ-16 films displayed multicolor photoluminescence including ultraviolet, blue, green and red emissions by exciting upon appropriate wavelengths. The results indicate that Si―OH and non-bridging oxygen hole centers(NBOHCs) are responsible for the origin of green and red emissions at 540―800 nm, while according to a variety of emission bands of calcined ITQ-16 film, blue emission bands at around 446 and 462 nm are attributed to peroxy free radicals(≡SiO2), ultraviolet emissions ranging from 250 nm to 450 nm are suggested originating from a singlet-to-triplet transition of two-fold-coordinated Si and Ge, respectively.

Keywords

Zeolite beta / Film / ITQ-16 / Defect / Photoluminescence

Cite this article

Download citation ▾
Yanli Chen, Xinglong Dong, Zhenyu Zhang, Lai Feng. Multicolor photoluminescence in ITQ-16 zeolite film. Chemical Research in Chinese Universities, 2016, 32(5): 713-718 DOI:10.1007/s40242-016-6079-5

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Sridevi U., Rao B. K. B., Pradhan C., Tambe S. S., Satyanarayana C. V., Rao B. S. Ind. Eng. Chem. Res., 2001, 40(14): 3133.

[2]

Bernasconi S., Pirngruber G., Kogelbauer A., Prins R. J. Catal., 2003, 219(1): 231.

[3]

Liu S. L., Huang S. J., Xin W. J., Qin X. H., Xie S. J., Xu L. Y. Chem. Res. Chinese Universities, 2004, 20(5): 637.

[4]

Yu L., He H. Y., He C. J., Zhu H. Y., Wen J. J., Pang W. Q. Chem. J. Chinese Universities, 2006, 27(3): 538.

[5]

Treacy M. M. J., Newsam J. M. Nature, 1988, 332(6161): 249.

[6]

Newsam J. M., Treacy M. M. J., Koetsier W. T., de Gruyter C. B. Proc. R. Soc. Lond. Ser. A, 1988, 420(1859): 375.

[7]

Liu Z., Ohsuna T., Terasaki O., Camblor M. A., Diaz-Cabañas M., Hiraga K. J. Am. Chem. Soc., 2001, 123(22): 5370.

[8]

Corma A., Xamena F. X. L., Prestipino C., Renz M., Valencia S. J. Phys. Chem. C, 2009, 113(26): 11306.

[9]

Masaru O., Tatsuya O., Shanmugam P. E. Catal. Lett., 2007, 118(1): 72.

[10]

Johannes K., Hayim A., Svetlana M., Thomas B. Phys. Chem. C, 2008, 112(37): 14274.

[11]

Holmberg B. A., Hwang S. J., Davis M. E., Yan Y. Micropor. Mesopor. Mater., 2005, 80(1-3): 347.

[12]

Corma A., Domine M. E., Valencia S. J. Catal., 2003, 215(2): 294.

[13]

Bellussi G., Pazzuconi G., Perego C., Girotti G., Terzoni G. J. Catal., 1995, 157(1): 227.

[14]

Sun J., Zhu G. S., Chen Y. L., Li J. X., Wang L. F., Peng Y., Li H., Qiu S. L. Micropor. Mesopor. Mater., 2007, 102(1-3): 242.

[15]

Treacy M. M. J., Newsam J. M., Deem M. W. Proc. R. Soc. Lond. Ser. A, 1991, 433(1889): 499.

[16]

Szostak R., Pan M., Lillerud K. P. J. Phys. Chem., 1995, 99(7): 2104.

[17]

Janiszewska E., Macario A., Wilk J., Aloise A., Kowalak S., Nagy J. B., Giordano G. Micropor. Mesopor. Mater., 2013, 182(6): 220.

[18]

Dib E., Grand J., Mintova S., Fernandez C. Chem. Mater., 2015, 27(22): 7577.

[19]

Fodor D., Redondo A. B., Krumeich F., van Bokhoven J. A. J. Phys. Chem. C, 2015, 119(10): 5447.

[20]

Bushuev Y. G., Sastre G. J. Phys. Chem. C, 2009, 113(25): 10877.

[21]

Trzpit M., Soulard M., Patarin J., Desbiens N., Cailliez F., Boutin A., Demachy I., Fuchs A. H. Langmuir, 2007, 23(20): 10131.

[22]

Kortunov P., Vasenkov S., Chmelik C., Kärger J., Ruthven D. M., Wloch J. Chem. Mater., 2004, 16(18): 3552.

[23]

Wright P. A., Zhou W. Z., Pérez-Pariente J., Arranz M. J. Am. Chem. Soc., 2005, 127(2): 494.

[24]

Glinka Y. D. Phys. Rev. B, 2002, 66(3): 035404.

[25]

Zatsepin A., Kortov V. S., Fitting H. J. J. Non-Cryst. Solids, 2005, 351(10/11): 869.

[26]

Garapon J., Favaro L., Poumellec B. J. Non-Cryst. Solids, 2007, 353(5): 605.

[27]

Shen J. L., Chen P. N., Lee Y. C., Cheng C. F. Solide State Commun., 2002, 122(1/2): 65.

[28]

Gai L. G., Jiang H. H., Cui D. L., Wang Q. L. Micropor. Mesopor. Mater., 2009, 120(3): 410.

[29]

Shen J. L., Lee Y. C., Liu Y. L., Yu C. C., Cheng P. W., Cheng C. F. Micropor. Mesopor. Mater., 2003, 64(1-3): 135.

[30]

Zhang Y. S., Yang Z. M., Liu D. L., Nie E., Bai X., Li Z., Song H. B., Zhou Y., Li W. Y., Gong M., Sun X. S. J. Lumin., 2010, 130(6): 1005.

[31]

Griscom D. L. J. Non-Cryst. Solids, 2011, 357(8/9): 1945.

[32]

Glinka Y. D. J. Phys. Chem. B, 2000, 104(36): 8652.

[33]

Corma A., Navarro M. T., Rey F., Valencia S. Chem. Commun., 2001, 18(18): 1720.

[34]

Sastre G., Vidal-Moya J. A., Blasco T., Rius J., Jordá J. L., Navarro M. T., Rey F., Corma A. Angew. Chem. Int. Ed., 2002, 41(24): 4722.

[35]

Blasco T., Corma A., Díaz-Cabañas M. J., Fernando R., Vidal-Moya J. A., Zicovich-Wilson C. M. J. Phys. Chem. B, 2002, 106(10): 2634.

[36]

Corma A., Navarro M. T., Rey F., Rius J., Valencia S. Angew. Chem. Int. Ed., 2001, 40(12): 2277.

[37]

Mitra A., Cao T. G., Wang H. T., Wang Z. B., Huang L. M., Li S., Li Z. J., Yan Y. S. Ind. Eng. Chem. Res., 2004, 43(12): 2946.

[38]

Glinka Y. D., Lin S. H., Chen Y. T. Phys. Rev. B, 2000, 62(7): 4733.

[39]

Zhao X. S., Lu G. Q., Whittaker A. K., Millar G. J., Zhu H. Z. J. Phys. Chem. B, 1997, 101(33): 6525.

[40]

Hong S. B., Camblor M. A., Davis M. E. J. Am. Chem. Soc., 1997, 119(4): 761.

[41]

Glinka Y. D., Krak T. B., Belyak Y. N., Degoda V. Y., Ogenko V. M. J. Colloids Surf. A, 1995, 104(1): 17.

[42]

Guzzi M., Martini M., Pio F., Spinolo G., Vedda A., Devine R. Ed.s. The Physics and Technology of Amorphous SiO2, 1998, New York: Plenum Press, 175.

[43]

Inaki Y., Yoshida H., Yoshida T., Hattori T. J. Phys. Chem. B, 2002, 106(35): 9098.

[44]

Skuja L. J. Non-Cryst. Solids, 1992, 149(1/2): 77.

[45]

Pacchioni G., Ieranò G. J. Non-Cryst. Solids, 1997, 216(1): 174.

[46]

Shen J. L., Lee Y. C., Lui Y. L., Cheng P. W., Cheng C. F. J. Phys.: Condens. Matter, 2003, 15(20): 297.

[47]

Skuja L. N., Truhin A. N., Plaudis A. E. Phys. Status Solidi, 1984, 84(2): 153.

AI Summary AI Mindmap
PDF

161

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/