Basic catalytic performance of amino and acylamide functionalized metal-organic framework in the synthesis of chloropropene carbonate from CO2 under atmospheric pressure

Lili Song , Chao Chen , Xiangbin Chen , Ning Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 838 -842.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (5) : 838 -842. DOI: 10.1007/s40242-016-6076-8
Article

Basic catalytic performance of amino and acylamide functionalized metal-organic framework in the synthesis of chloropropene carbonate from CO2 under atmospheric pressure

Author information +
History +
PDF

Abstract

In this work, a metal-organic framework with free standing basic groups(e. g., amino and acylamide groups) decorated in the pore wall was utilized to catalyze the CO2 cycloaddition reaction and its basic properties were tested in Knoevenagel condensation reactions. The results reveal that the metal-organic framework(MOF) material has excellent catalytic activity and high repeatability for the synthesis of chloropropene carbonate from CO2 and epichlorohydrin with no co-catalyst under mild reaction conditions, suggesting that it is a promising heterogeneous catalyst for CO2 cycloaddition reaction.

Keywords

Metal-organic framework / Heterogeneous catalysis / CO2 / Chloropropene carbonate

Cite this article

Download citation ▾
Lili Song, Chao Chen, Xiangbin Chen, Ning Zhang. Basic catalytic performance of amino and acylamide functionalized metal-organic framework in the synthesis of chloropropene carbonate from CO2 under atmospheric pressure. Chemical Research in Chinese Universities, 2016, 32(5): 838-842 DOI:10.1007/s40242-016-6076-8

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Yin X. B., Tiance A., Wang Y., Zhang L. J. Chem. Res. Chinese Universities, 2014, 30(3): 356.

[2]

Han P. F., Yuan C. F., Xu J. Y., Liu J. Chem. Res. Chinese Universities, 2014, 30(1): 1.

[3]

Cavenati S., Grande C. A., Rodrigues A. E. Ind. Eng. Chem. Res., 2008, 47: 6333.

[4]

Mofarahi M., Khojasteh Y., Khaledi H., Farahnak A. Energy, 2008, 33: 1311.

[5]

Liu Y. Y., Couck S., Vandichel M., Grzywa M., Leus K., Biswas S., Volkmer D., Gascon J., Kapteijn F., Denayer J. F. M., Waroquier M., Speybroeck V. V., Voort P. V. D. Inorg. Chem., 2013, 52: 113.

[6]

Kim J., Bhattacharjee S., Jeong K. E., Jeong S. Y., Ahn W. S. Chem. Commun., 2009, 3904.

[7]

Lee J. Y., Farha O. K., Roberts J., Scheidt K. A., Nguyen S. B. T., Hupp J. T. Chem. Soc. Rev., 2009, 38: 1450.

[8]

Mayoral E. P., Cejka J. Chem. Cat. Chem., 2011, 3: 157.

[9]

Alaerts L., Séguin E., Poelman H., Thibault-Starzyk F., Jacobs P. A., de Vos D. E. Chem-Eur. J., 2006, 12: 7353.

[10]

Horcajada P., Chalati T., Serre C., Gillet B., Sebrie C., Baati T., Eubank J. F., Heurtaux D., Clayette P., Kreuz C., Chang J. S., Hwang Y. K., Marsaud V., Bories P. N., Cynober L., Gil S., Férey G., Couvreur P., Gref R. Nat. Mater., 2010, 9: 172.

[11]

Horcajada P., Serre C., Maurin G., Ramsahye N. A., Balas F., Vallet-Regí M., Sebban M., Taulelle F., Férey G. J. Am. Chem. Soc., 2008, 130: 6774.

[12]

Xie Z., Ma L., De Krafft K. E., Jin A., Lin W. J. Am. Chem. Soc., 2009, 131: 922.

[13]

Kim M., Cahill J. F., Fei H., Prather K. A., Cohen S. M. J. Am. Chem. Soc., 2012, 134: 18082.

[14]

Liu B., Shioyama H., Akita T., Xu Q. J. Am. Chem. Soc., 2008, 130: 5390.

[15]

Liu B., Shioyama H., Jiang H., Zhang X., Xu Q. Carbon, 2010, 48: 456.

[16]

Huang Y., Xu Y., Yariv A. Appl. Phys. Lett., 2004, 85: 5182.

[17]

Song L. L., Chen C., Chen X. B., Zhang N. New J. Chem., 2016, 40: 2904.

[18]

Chen C., Zhang J., Li G. H., Shen P., Jin H. C., Zhang N. Dalton Trans., 2014, 43: 13965.

[19]

Ema T., Miyazaki Y., Koyama S., Yano Y., Sakai T. Chem. Commun., 2012, 48: 4489.

[20]

Carreon M. A. Indian J. Chem. A, 2012, 51: 1306.

[21]

Zalomaeva O. V., Chibiryaev A. M., Kovalenko K. A., Kholdeeva O. A., Balzhinimaev B. S., Fedin V. P. J. Catal., 2013, 298: 179.

[22]

Leitner W. Coord. Chem. Rev., 1996, 155: 257.

[23]

Darensbourg D. J., Holtcamp M. W. Coord. Chem. Rev., 1996, 153: 155.

[24]

Ema T., Miyazaki Y., Shimonishi J., Maeda C., Hasegawa J. Y. J. Am. Chem. Soc., 2014, 136: 15270.

[25]

Yang D. A., Cho H. Y., Kim J., Yang S. T., Ahn W. S. Energy Environ. Sci., 2012, 5: 6465.

[26]

Liu X. H., Ma J. G., Niu Z., Yang G. M., Cheng P. Angew. Chem. Int. Ed., 2014, 53: 1.

[27]

Biggadike K., Angell R. M., Burgess C. M., Farrell R. M., Hancock A. P., Harker A. J., Irving A. J., Irving W. R., Ioannou C., Procopiou P. A., Shaw R. E., Solanke Y. E., Singh O. M. P., Snowden M. A., Stubbs R., Walton S., Weston H. E. J. Med. Chem., 2000, 43: 19.

[28]

Shaikh A. A. G., Sivaram S. Chem. Rev., 1996, 96: 951.

[29]

Song J. L., Zhang Z. F., Hu S. Q., Wu T. B., Jiang T., Han B. X. Green Chem., 2009, 11: 1031.

[30]

Ren Y. W., Shi Y. C., Chen J. X., Yang S. R., Qi C. R., Jiang H. F. RSC Adv., 2013, 3: 2167.

[31]

Guillerm V., Weselinski L. J., Belmabkhout Y., Cairns A. J., D’Elia V., Wojtas L., Adil K., Eddaoudi M. Nat. Chem., 2014, 6: 673.

[32]

Macias E. E., Ratnasamy P., Carreon M. A. Catal. Today, 2012, 198: 215.

[33]

Zhou X., Zhang Y., Yang X. G., Zhao L. Z., Wang G. Y. J. Mol. Catal. A Chem., 2012, 361/362: 12.

[34]

Gascon J., Aktay U., Hernandez-Alonso M. D., Gerard P. M., van Klink Kapteijn F. J. Catal., 2009, 261: 75.

[35]

An J., Geib S. J., Rosi N. L. J. Am. Chem. Soc., 2010, 132: 38.

[36]

Xu W. Y., Huang S. Y., Luo F. Inorg. Chem. Commun., 2014, 49: 56.

[37]

Duan J. G., Zou C. C., Li Q. Q., Jin W. Q. CrystEngComm, 2015, 17: 8226.

[38]

Luo F., Wang M. S., Luo M. B., Sun G. M., Song Y. M., Li P. X., Guo G. C. Chem. Commun., 2012, 48: 5989.

[39]

Phan A., Doonan C. J., Uribe-Romo F. J., Knobler C. B., Keefe M. O., Yaghi O. M. Acc. Chem. Res., 2010, 43: 58.

[40]

Couck S., Denayer J. F. M., Baron G. V., Rémy T., Gascon J., Kapteijn F. J. Am. Chem. Soc., 2009, 131: 6326.

[41]

Vaidhyanathan R., Iremonger S. S., Dawson K. W., Shimizu G. K. H., Chem. Comm., 2009, 5230

[42]

Yang E., Li H. Y., Wang F., Yang H., Zhang J. CrystEngComm, 2013, 15: 658.

[43]

Zheng B. S., Bai J. F., Duan J. G., Wojtas L., Zaworotko M. J. J. Am. Chem. Soc., 2011, 133: 748.

[44]

Duan J. G., Yang Z., Bai J. F., Zheng B. S., Li Y. Z., Li S. H. Chem. Commun., 2012, 48: 3058.

[45]

Yu K. M. K., Curcic I., Gabriel J., Morganstewart H., Tsang S. C. J. Phys. Chem. A, 2010, 114: 3863.

[46]

Villaverde M., Bertero N., Garetto T. Catal. Today, 2013, 213: 87.

[47]

Seki T., Onaka M. J. Mol. Catal. A Chem., 2007, 263: 115.

[48]

Tamami B., Fadavi A. Catal. Commun., 2005, 6: 747.

[49]

Climent M. J., Corma A., Domínguez I., Iborra S., Sabater M. J., Sastre G. J. Catal., 2007, 246: 136.

[50]

Tu M., Davis R. J. J. Catal., 2001, 199: 85.

[51]

Miralda C. M., Macias E. E., Zhu M., Ratnasamy P., Carreon M. A. ACS Catal., 2012, 2: 180.

AI Summary AI Mindmap
PDF

127

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/