Synthesis of Gd-N codoped porous TiO2 photocatalyst and its enhanced photocatalytic activities

Yanmin Yu , Hua Li , Lijin Piao , Huiying Chen , Wenzhong Wang , Jianxin Xia

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1038 -1044.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 1038 -1044. DOI: 10.1007/s40242-016-6074-x
Article

Synthesis of Gd-N codoped porous TiO2 photocatalyst and its enhanced photocatalytic activities

Author information +
History +
PDF

Abstract

Visible-light-active Gd-N codoped porous TiO2(Gd-N-TiO2) photocatalyst was fabricated by an evapora-tion-induced self-assembly route using surfactants as structure-directed agents. As-prepared samples were characte-rized by X-ray diffraction, field-emission scanning electron microscopy, transmission electron microscopy(TEM), X-ray photoelectron spectroscopy, Brunauer-Emmett-Teller(BET) method, and ultraviolet-visible absorption spec-troscopy. The results indicated that synergistic reaction occurred when codoping with Gd3+ and N, which enhanced the light absorption properties of TiO2. Irregular worm-like particles with wide interparticle spaces were clearly observed by TEM. The average particle size of Gd-N-TiO2 decreased to ca. 8 nm because co-doping inhibited the particles growth significantly. Thus, the specific surface area of Gd-N-TiO2(198.7 m2/g) was higher than that of Degussa P25 TiO2(50 m2/g). Gd-N-TiO2 exhibited a high photocatalytic activity toward methyl orange degradation under UV-Vis or visible-light irradiation. The Gd-N-TiO2 catalyst also presented a stable performance without losing activity after four successive photocatalytic experiments. The facile synthesis and excellent activity of Gd-N-TiO2 indicated its great potential as industrial catalysts for wastewater treatment.

Keywords

TiO2 / Gadolinium ion / Nitrogen / Codoping / Photocatalysis

Cite this article

Download citation ▾
Yanmin Yu, Hua Li, Lijin Piao, Huiying Chen, Wenzhong Wang, Jianxin Xia. Synthesis of Gd-N codoped porous TiO2 photocatalyst and its enhanced photocatalytic activities. Chemical Research in Chinese Universities, 2016, 32(6): 1038-1044 DOI:10.1007/s40242-016-6074-x

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Chong M. N., Jin B., Chow C. W., Saint C. Water Res., 2010, 44(10): 2997.

[2]

Cui K., Ding G. Z., Li B., Chen S. F., Liu J. P. Chem. Res. Chinese Universities, 2011, 27(5): 870.

[3]

Xu Z., Quintanilla M., Vetrone F., Govorov A. O., Chaker M., Ma D. Adv. Funct. Mater., 2015, 25(20): 2950.

[4]

Fang J., Wang F., Qian K., Bao H., Jiang Z., Huang W. J. Phys. Chem. C, 2008, 112(46): 18150.

[5]

Fang Y., Jiao Y., Xiong K., Ogier R., Yang Z. J., Gao S., Dahlin A. B., Käll M. Nano Lett., 2015, 15(6): 4059.

[6]

Feng Y., Li L., Ge M., Guo C., Wang J., Liu L., ACS Appl. Mater. In-terfaces, 2010, 2(11), 3134

[7]

Zhang J. C., Wen Y., Li Q. Y., Han Z. Y., Fu Z. H., Cao W. L. Chem. Res. Chinese Universities, 2013, 29(5): 998.

[8]

Qian W., Greaney P. A., Fowler S., Chiu S. K., Goforth A. M., Jiao J. ACS Sustain. Chem. Eng., 2014, 2(7): 1802.

[9]

Thind S. S., Wu G., Chen A. Appl. Catal. B: Environ., 2012, 111/112(6): 38.

[10]

Xu M., Da P., Wu H., Zhao D., Zheng G. Nano Lett., 2012, 12(3): 1503.

[11]

Luo W., Fu C., Li R., Liu Y., Zhu H., Chen X. Small, 2011, 7(21): 3046.

[12]

Yao Y., Qin J., Chen H., Wei F., Liu X., Wang J., Wang S., J. Hazard. Mater., 2015, 291, 28

[13]

Sun L., Zhao X., Cheng X., Sun H., Li Y., Li P., Fan W. Langmuir, 2012, 28(13): 5882.

[14]

Gong J., Pu W., Yang C., Zhang J. Chem. Eng. J., 2012, 209(41): 94.

[15]

Li J., Li B., Li J., Liu J., Wang L., Zhang H., Zhang Z., Zhao B. J. Ind. Eng. Chem., 2015, 25: 16.

[16]

Antoniadou M., Daskalaki V. M., Balis N., Kondarides D. I., Kordu-lis C., Lianos P. Appl. Catal. B: Environ., 2011, 107(1/2): 188.

[17]

Zhang X., Liu Y., Lee S. T., Yang S., Kang Z. Energy Environ. Sci., 2014, 7(4): 1409.

[18]

Xu A. W., Gao Y., Liu H. Q. J. Catal., 2002, 207(2): 151.

[19]

Cai H., Chen X., Li Q., He B., Tang Q. Appl. Surf. Sci., 2013, 284(10): 837.

[20]

Asahi R., Morikawa T., Ohwaki T., Aoki K., Taga Y. Science, 2001, 293(5528): 269.

[21]

Mohan M. K., Gopi S., Joseph H. M., Sugunan S. J. Porous Mater., 2014, 21(6): 975.

[22]

Wang Q., Jiang H., Zang S., Li J., Wang Q. J. Alloys Compd., 2014, 586: 411.

[23]

Tian B., Liu X., Tu B., Yu C., Fan J., Wang L., Xie S., Stucky G. D., Zhao D. Nature Materials, 2003, 2(3): 159.

[24]

Lin L., Chai Y., Yang Y., Wang X., He D., Tang Q., Ghoshroy S. Int. J. Hydrogen Energy, 2013, 38(6): 2634.

[25]

Lei X. F., Xue X. X., Yang H., Chen C., Li X., Niu M. C., Gao X. Y., Yang Y. T. Appl. Surf. Sci., 2015, 332(9): 172.

[26]

Li Z. Q., Que Y. P., Mo L. E., Chen W. C., Ding Y., Ma Y. M., Jiang L., Hu L. H., Dai S. Y. ACS Appl. Mater. Interfaces, 2015, 7(20): 10928.

[27]

Lu D., Fang P., Liu Y., Liu Z., Liu X., Gao Y., Chen F., Niu F. J. Nanopart Res., 2014, 16(10): 11.

[28]

Li Y. F., Xu D., Oh J. I., Shen W., Li X., Yu Y. ACS Catal., 2012, 2(3): 391.

[29]

Mocherla P. S. V., Karthik C., Ubic R., Ramachandra R. M. S., Su-dakar C. Appl. Phys. Lett., 2013, 103(2): 022910.

[30]

Liu H., Thind S. S., Wu G., Wen J., Chen A. J. Electroanal. Chem., 2015, 736: 93.

[31]

Paul S., Chetri P., Choudhury B., Ameen Ahmed G., Choudhury A. J. Colloid Interf. Sci., 2015, 439: 54.

[32]

Li X., Sun G., Li Y., Yu J. C., Wu J., Ma G. H., Ngai T. Langmuir, 2014, 30(10): 2676.

AI Summary AI Mindmap
PDF

123

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/