Aerobic alcohol ammoxidation catalyzed by copper(I)/amino acid: a scalable protocol to nitriles

Guofu Zhang , Guihua Zhang , Jie Lei , Shasha Li , Shengjun Xu , Chengrong Ding , Shang Shan

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 586 -593.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 586 -593. DOI: 10.1007/s40242-016-6067-9
Article

Aerobic alcohol ammoxidation catalyzed by copper(I)/amino acid: a scalable protocol to nitriles

Author information +
History +
PDF

Abstract

A facile, practical and scalable catalyst system for alcohols ammoxidation into nitriles is developed using amino acid as ligand, oxygen as terminal oxidant and copper iodide(CuI) as catalyst. The catalyst system shows excellent functional groups compatibility for a wide range of testing substrates, even the substrates bearing oxidation-sensitive groups such as MeS—, alkenyl and —NH2 can also work well. In addition, the protocol is readily scaled up to more than 20 g and the product can be obtained just through filtration or distillation without conventional column chromatography.

Keywords

Alcohol / Amino acid / Nitrile / Copper iodide / Scale up

Cite this article

Download citation ▾
Guofu Zhang, Guihua Zhang, Jie Lei, Shasha Li, Shengjun Xu, Chengrong Ding, Shang Shan. Aerobic alcohol ammoxidation catalyzed by copper(I)/amino acid: a scalable protocol to nitriles. Chemical Research in Chinese Universities, 2016, 32(4): 586-593 DOI:10.1007/s40242-016-6067-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hodgson H. H. Chem. Rev., 1947, 40(2): 251.

[2]

Rappoport Z. The Chemistry of the Cyano Group, 1970.

[3]

Fatiadi A. J. Preparation and Synthetic Applications of Cyano Compounds, 1983

[4]

Larock R. C. Comprehensive Organic Transformations: a Guide to Functional Group Preparations, 1999.

[5]

Fleming F. F. Nat. Prod. Rep., 1999, 16(5): 597.

[6]

Liu K. C., Howe R. K. J. Org. Chem., 1983, 48(24): 4590.

[7]

Harris T. M., Harris C. M. T., Oster A., Brown L. E., Lee J. Y. C. J. Am. Chem. Soc., 1988, 110(18): 6180.

[8]

Galli C. Chem. Rev., 1988, 88(5): 765.

[9]

Miller J. S., Manson J. L. Acc. Chem. Res., 2001, 34(7): 563.

[10]

Martin A., Kalevaru V. N. Chem. Cat. Chem., 2010, 2(12): 1504.

[11]

Yang C. H., Williams J. M. Org. Lett., 2004, 6(17): 2837.

[12]

Cristau H. J., Ouali A., Spindler J. F., Taillefer M. Chem. Eur. J., 2005, 11(8): 2483.

[13]

Mariampillai B., Alliot J., Li M. Z., Lautens M. J. Am. Chem. Soc., 2007, 129(49): 15372.

[14]

Wang D. P., Kuang L. P., Li Z. W., Ding K. Synlett., 2008, 1: 69.

[15]

Anbarasan P., Schareina T., Beller M. Chem. Soc. Rev., 2011, 40(10): 5049.

[16]

Ushkov A. V., Grushin V. V. J. Am. Chem. Soc., 2011, 133(28): 10999.

[17]

Yan G., Yu J., Zhang L. Chin. J. Org. Chem., 2012, 32(2): 294.

[18]

Shim Y. J., Lee H. J., Park S. J. Organomet. Chem., 2012, 696(26): 4173.

[19]

Magnus P., Scott D. A., Fielding M. R. Tetrahedron Lett., 2001, 42(25): 4127.

[20]

Smith M. B., March J. March’s Advanced Organic Chemistry: Reactions, Mechanisms, and Structure; 6th Ed., 2007.

[21]

Wen Q. D., Jin J. S., Zhang L. P., Luo Y., Lu P., Wang Y. G. Tetrahedron Lett., 2014, 55(7): 1271.

[22]

Fan Q. H., Ni N. T., Li Q., Zhang L. H., Ye X. S. Org. Lett., 2006, 6(5): 1007.

[23]

Naoshi M., Hideo T. Synlett., 2005, 36(9): 1456.

[24]

Iida S., Togo H. Tetrahedron, 2007, 63(34): 8274.

[25]

Ren Y. M., Zhu Y. Z., Cai C. J. Chem. Res., 2008, 1: 18.

[26]

Zhu C. J., Sun C. G., Wei Y. Y. Synthesis, 2010, 24: 4235.

[27]

Hiroyuki S., Katsuhiko M., Hideo T. Synthesis, 2013, 45(15): 2155.

[28]

Ishida T., Watanabeb H., Takei T., Hamasakia A., Tokunaga M., Haruta M. Appl. Catal. A: Gen., 2012, 425(3): 85.

[29]

Reddy K. R., Maheswari C. U., Venkateshwar M., Prashanthi S., Kantam M. L. Tetrahedron Lett., 2009, 50(18): 2050.

[30]

Shigekazu Y., Yasuyuki Y. Chem. Lett., 1990, 4: 571.

[31]

Chen F. E., Li Y. Y., Jia H. Q. Synthesis, 2002, 13: 1804.

[32]

Biondini D., Brinchi L., Germani R., Goracci L., Savelli G. Eur. J. Org. Chem., 2005, 14: 3060.

[33]

Rokade B. V., Malekar S. K., Prabhu K. R. Chem. Commun., 2012, 48(44): 5506.

[34]

Yadav D. K. T., Bhanage B. M. Eur. J. Org. Chem., 2013, 45(45): 5106.

[35]

Tao C. Z., Liu F., Zhu Y. M., Liu W. W., Cao Z. L. Org. Biomol. Chem., 2013, 11(20): 3349.

[36]

Jagadeesh R. V., Junge H., Beller M. Nature Commun., 2014, 5: 4123.

[37]

Molla R. A., Ghosh K., Tuhina K., Islam S. M. New J. Chem., 2015, 39(2): 921.

[38]

Oishi T., Yamaguchi K., Mizuno N. Angew. Chem. Int. Ed., 2009, 48(52): 6286.

[39]

Tan D. W., Xie J. B., Li Q., Li H. X., Li J. C., Li H. Y., Lang J. P. Dalton Trans., 2014, 43(37): 14061.

[40]

Xie J. B., Bao J. J., Li H. X., Tan D. W., Li H. Y., Lang J. P. RSC Adv., 2014, 4(96): 54007.

[41]

Dornan L. M., Cao Q., Flanagan J. C. A., Crawford J. J., Cook M. J., Muldoon M. J. Chem. Commun., 2013, 49(54): 6030.

[42]

Yin W. Y., Wang C. M., Huang Y. Org. Lett., 2013, 15(8): 1850.

[43]

Hoover J. M., Stahl S. S. J. Am. Chem. Soc., 2011, 133(42): 16901.

[44]

Hoover J. M., Ryland B. L., Stahl S. S. J. Am. Chem. Soc., 2013, 135(6): 2357.

[45]

Hill N. J., Hoover J. M., Stahl S. S. J. Chem. Educ., 2013, 90(1): 102.

[46]

Zhang G. F., Han X. W., Luan Y. X., Wang Y., Wen X., Ding C. R. Chem. Commun., 2013, 49(72): 7908.

[47]

Zhang G. F., Lei J., Han X. W., Luan Y. X., Ding C. R., Shan S. Synlett., 2015, 26(6): 779.

[48]

Saigo K., Kubota N., Takebayashi S., Hasegawa M. Bull. Chem. Soc. Jpn., 1986, 59(3): 931.

[49]

Oishi T., Yamaguchi K., Mizuno N. Top. Catal., 2010, 53(7): 479.

[50]

Nie R. F., Shi J. J., Xia S. X., Shen L., Chen P., Hou Z. Y., Xiao F. S. J. Mater. Chem., 2012, 22(35): 18115.

[51]

Pérez V. T., Arriba A. F. D., Monleón L. M., Simón L., Rubio O. H., Sanz F., Morán J. R. Tetrahedron, 2014, 70(45): 8614.

AI Summary AI Mindmap
PDF

114

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/