Synthesis, structural study and phase transitions characterization by thermal analysis and vibrational spectroscopy of an ammonium rubidium arsenate tellurate

Khouloud Ghorbel , Hajer Litaiem , Lilia Ktari , Santiago Garcia-Granda , Mohamed Dammak

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 902 -911.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (6) : 902 -911. DOI: 10.1007/s40242-016-6056-z
Article

Synthesis, structural study and phase transitions characterization by thermal analysis and vibrational spectroscopy of an ammonium rubidium arsenate tellurate

Author information +
History +
PDF

Abstract

The Rb2.42(NH4)0.58(HAsO4)(H2AsO4)·Te(OH)6 crystals(denoted by RbNAsTe) crystallize in the monoc-linic system, space group P21/n with the following parameters: a=1.3059(5) nm, b=0.6755(3) nm, c=1.6675(6) nm, β=94.126(4)°, Z=4 and V=1.46733(10) nm3. Thermal analyses(DSC, DTA and TG) confirm the presence of the phase transition and the temperature of the decomposition. The vibrational spectroscopy study at room temperature show the presence and the independence of anionic groups, cationic groups, and give more importance to the hydrogen bonds. Raman spectra were recorded in the temperature range of 298―503 K. The temperature dependence of the Raman line shift, intensity reduction and the half width detects the phase transitions and confirms their nature. So, the phase transition at 453 K corresponds to the superprotonic-ionic conduction phase transition, and those at 483 and 491 K correspond to the decomposition of our material.

Keywords

RbNAsTe / X-Ray diffraction / Differential scanning calorimetry / Phase transition / Raman spectrometry

Cite this article

Download citation ▾
Khouloud Ghorbel, Hajer Litaiem, Lilia Ktari, Santiago Garcia-Granda, Mohamed Dammak. Synthesis, structural study and phase transitions characterization by thermal analysis and vibrational spectroscopy of an ammonium rubidium arsenate tellurate. Chemical Research in Chinese Universities, 2016, 32(6): 902-911 DOI:10.1007/s40242-016-6056-z

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Litaiem H., Dammak M., Mhiri T., Cousson A. Alloys Compd., 2005, 396: 34.

[2]

Dammak M., Khemakhem H., Mhiri T. Phys. Chem. Solids, 2001, 62: 2069.

[3]

Ktari L., Dammak M., Hadrich A., Cousson A., Nierlich M., Romain F., Mhiri T. Solid State Sci., 2004, 6: 1393.

[4]

Ktari L., Dammak M., Madani A., Mhiri T. Solid State Ionics, 2001, 145: 225.

[5]

Zilber R., Durif A., Averbuch-Pouchot M. T. Acta Cryst., 1981, B37: 650.

[6]

Dammak M., Khemekhem H., Mhiri T., Kolsi A. W., Daoud A. Alloys Compd., 1998, 280: 107.

[7]

Dammak M., Litaiem H., Gravereau P., Mhiri T., Kolsi A. W., Alloys Compd., 2007, 442, 316

[8]

Dammak M., Khemakhem H., Zouari N., Kolsi A. W., Mhiri T. Solid State Ionics, 2000, 127: 125.

[9]

Averbuch-Pouchot M. T. Acta Cryst., 1992, 48: 973.

[10]

Boudjada N., Boudjada A., Guitel J. C. Acta Cryst., 1983, 39: 656.

[11]

Durif A., Averbuch-Pouchot M. T., Guitel J. C. Acta Cryst., 1979, 35: 1444.

[12]

Bechibani I., Litaiem H., Ktari L., Garcia-Granda S., Dammak M. Mol. Struct., 2014, 1075: 579.

[13]

Bechibani I., Litaiem H., Ktari L., Zouari N., Garcia-Granda S., Dammak M. Phys. Chem. Solids, 2014, 75: 911.

[14]

Ktari L., Dammak M., Kolsi A. W., Cousson A. Alloys Compd., 2009, 476: 54.

[15]

Dammak M., Ktari L., Cousson A., Mhiri T. Solid State Chem., 2005, 178: 2109.

[16]

Ktari L., Dammak M., Mhiri T., Savariault J. M. Solid State Chem., 2000, 16: 1.

[17]

Bechibani I., Litaiem H., Ktari L., Lhoste J., Dammak M. Mol. Struct., 2013, 1045: 199.

[18]

Ktari L., Dammak M., Mhiri T., Kolsi A. W. Phys. Chem. News, 2002, 8: 1.

[19]

Ghorbel K., Litaiem H., Ktari L., Garcia-granda S., Dammak M. Mol. Struct., 2015, 1079: 225.

[20]

CrysAlis CCD and CrysAlis RED, Oxford Diffraction Ltd., Yarnton, Oxfordshire, 2010

[21]

Betteridge P. W., Carruthers J. R., Cooper R. I., Watkin K. Appl. Cryst., 2003, 36: 1487.

[22]

Brandenburg K., Berndt M. Diamond, 1999, Germany: Crystal Impact Gb R Bonn.

[23]

Ferraris G., Jones D. W., Yerkess J. Acta Crystallogr, 1972, B28: 2430.

[24]

Ferraris G., Angela M. F. Acta Crystallogr, 1973, B29: 286.

[25]

Naïli H., Vendier L., Jaud J., Mhiri T. Solid State Sci., 2001, 3: 677.

[26]

Ghorbel K., Litaiem H., Ktari L., Garcia-Granda S., Dammak M. Ionics, 2016, 22: 251.

[27]

Faby J., Loub J., Feltl L. Therm. Anal., 1982, 24: 95.

[28]

Ekambaram S., Sevov S. C. Inorg. Chem., 2000, 39: 2405.

[29]

Litaiem H., Dammak M., Ktari L., Kammoun S., Mhiri T. Phase Transitions, 2004, 77: 929.

[30]

Jrifi A., El Jazouli A., Chaminade J. P., Couzi M. Powder Diffr., 2009, 24(3): 200.

[31]

Dhouib I., Elaoud Z., Mhiri T., Daoud A. J. Chem. Crystallogr., 2012, 42: 513.

[32]

Amri M., Zouari N., Mhiri T., Gravereau P. Alloys Compd., 2009, 477: 68.

[33]

Jarraya K. H., Gublin N., Guermani N., Mhiri T. Mater. Sci. Eng., 2012, 28: 012046.

[34]

Chabchoub N., Khemakhem H., Von der mühll R. Alloys Compd., 2005, 386: 319.

[35]

Dammak M., Hadrich A., Mhiri T. Alloys Compd., 2007, 428: 8.

[36]

Bortun A. I., Bortun L. N., Clear Field A., Trobajo C., Garcia J. R. Mater. Res. Bull., 1998, 33(4): 583.

[37]

Hadrich A., Lautie A., Mhiri T. Raman Spectrosc., 2000, 31: 587.

[38]

Lecalve N., Romain F., Limage M. H., Novak A. Mol. Struct., 1989, 200: 131.

[39]

Marchon B., Novak A. Chem. Phys., 1985, 78: 2105.

[40]

Ohno N., Lockwood D. J. Chem. Phys., 1985, 83: 4374.

[41]

Choi B. K., Kim J. J. Appl. Phys., 1985, 24: 914.

[42]

Baran J. Mol. Struct., 1987, 162: 211.

[43]

Siebert H., Anorg Z., Allgen V. Chem., 1959, 301: 161.

[44]

Farmer V. C. Mineralogical Society Monograph 4: the Infrared Spectra of Minerals, 1974, London: the Mineralogical Society.

AI Summary AI Mindmap
PDF

151

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/