Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids

Meng Zhang , Xianneng Tu , Jingyang Wang , Tuo Fang , Yanli Wang , Xiaodong Xu , Milin Zhang , Yitung Chen

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 530 -533.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 530 -533. DOI: 10.1007/s40242-016-6037-2
Article

Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids

Author information +
History +
PDF

Abstract

In this paper, CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals were synthesized via a hydrothermal method by mixing Cu(NO3)2·3H2O and NaOH together in the presence of an ionic liquid 1-butyl-3-methylimidazolium tetrafluoroborate([BMIM]BF4) or 1-butyl-3-methylimidazolium chloride([BMIM]Cl). The structures and the morphologies of the obtained products were characterized by means of X-ray diffractometer( XRD), field-emission scanning electron microscopy/energy-dispersive spectroscopy(FESEM/EDS), transmission electron microscopy/selected area electron diffraction(TEM/SAED) and Raman spectroscopy. The result of XRD indicates that Cu2O and Cu microcrystals are cubic phase and the Raman spectra confirm the presence of carbon. The results of FESEM and TEM images show Cu2O microcrystals as rule cubes of 2 μm in length and Cu particles of 5 μm in diameter. According to the difference between crystal structures, bi-component and single component products were synthesized by adjusting the reaction conditions. A possible formation mechanism of Cu2O and Cu was proposed in [BMIM]BF4.

Keywords

Ionic liquid / Hydrothermal method / Reducing agent / Microstructure / Crystal structure

Cite this article

Download citation ▾
Meng Zhang, Xianneng Tu, Jingyang Wang, Tuo Fang, Yanli Wang, Xiaodong Xu, Milin Zhang, Yitung Chen. Hydrothermal syntheses of CuO, CuO/Cu2O, Cu2O, Cu2O/Cu and Cu microcrystals using ionic liquids. Chemical Research in Chinese Universities, 2016, 32(4): 530-533 DOI:10.1007/s40242-016-6037-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Hu X. L., Zhang T. Y., Chen J. J., Gao H. G., Cai W. F. Ceram. Int., 2016, 42: 8505.

[2]

Uschakov A. V., Karpov I. V., Lepeshev A. A., Zharkov S. M. Vacuum, 2016, 128: 123.

[3]

Mayousse C., Celle C., Carella A., Simonato J. P. Nano Res., 2014, 7(3): 315.

[4]

Yang R. C., Tang D. X., Tao T. X., Ren Y. M., Zhang X., Xu M. D., Wang C. Mater. Lett., 2013, 113: 156.

[5]

Wu H. W., Lee S. Y., Lu W. C., Chang K. S. Appl. Surf. Sci., 2015, 344: 236.

[6]

Kumar B., Saha S., Ojha K., Ganguli A. K. Mater. Res. Bull., 2015, 64: 283.

[7]

Maryam S., Ashraf S. S., Kamelia M. Spectrochim. Acta, 2015, 135: 662.

[8]

Ananya G., Pranati N., Ramaprabhu S. Int. J. Hydrogen Energy, 2016, 41: 3974.

[9]

Yao W. T., Yu S. H., Zhou Y., Jiang J., Wu Q. S., Zhang L., Jiang J. J. Phys. Chem. B, 2005, 109: 14011.

[10]

Zhou L. J., Zou Y. C., Zhao J., Wang P. P., Feng L. L., Sun L. W., Wang D. J., Li G. D. Sens. Actuators B, 2013, 188: 533.

[11]

Saeed D., Ali M., Mohsen M. G., Najmeddin B., Sasan S., Ahlam N. Powder Technol., 2013, 246: 148.

[12]

Liu X. W., Geng B. Y., Du Q. B., Ma J. Z., Liu X. M. Mater. Sci. Eng., 2007, 448: 7.

[13]

Zhang L. N., Tao J. H., Ji K. J., Yue Q. F. Chem. J. Chinese Universities, 2014, 35(6): 1318.

[14]

Hasimu Y. S. J., Liu R. Q., Mi H. Y. Chem. J. Chinese Universities, 2014, 35(1): 140.

[15]

Wu L. Y., Liu Z. F., Qin Q., Cao Y. A. Chem. J. Chinese Universities, 2014, 35(5): 934.

[16]

Petkovic M., Seddon K. R., Rebeloa P. N., Pereira C. S. Chem. Soc. Rev., 2011, 40: 1383.

[17]

Ma Z., Yu J. H., Dai S. Adv. Mater., 2010, 22: 261.

[18]

Dong K., Zhang S. J., Chem. Eur. J., 2012, 18: 2748.

[19]

Pearson A., Mullane A. P., Bhargava S. K. Chem. Commun., 2010, 46: 731.

[20]

Xu P. P., Wang C. F., Sun D., Chen Y. J., Zhuo K. L. Chem. Res. Chinese Universities, 2015, 31(5): 730.

[21]

Sundrarajan M., Jegatheeswaran S., Selvam S., Sanjeevi N., Balaji M. Mater. Design, 2015, 88: 1183.

[22]

Li Z. H., Jia Z., Luan Y. X., Mu T. C. Curr. Opin. Solid State Mater. Sci., 2008, 12: 1.

[23]

Taubert A., Uhlmann A., Hedderich A., Kirchhoff K. Inorg. Chem., 2008, 47: 10758.

[24]

Zhang M., Xu X. D., Zhao Z. H., Zhang M. L. Fine Chem., 2007, 24: 69.

[25]

Jacob D. S., Genish I. K. L., Gedanken A. J. Phys. Chem. B, 2006, 110: 17711.

[26]

Maryam S., Behnoosh M. B. Mater. Lett., 2014, 117: 28.

[27]

Zhang M., Xu X. D., Zhao Z. H., Zhang M. L. J. Dispersion Sci. Technol., 2007, 28: 1223.

[28]

Xu X. D., Zhang M., Feng J., Zhang M. L. Mater. Lett., 2008, 62: 2787.

[29]

Zhang M., Xu X. D., Zhang M. L. Mater. Lett., 2008, 62: 385.

[30]

Zhang M., Xu X. D., Zhang M. L. J. Dispersion Sci. Technol., 2008, 29: 508.

[31]

Li Z. H., Liu Z. M., Zhang J. L., Han B. X., Du J. M., Gao Y. N. J. Phys. Chem. B, 2005, 109: 14445.

[32]

Yang L. X., Zhu Y. J., Wang W. W., Tong H., Ruan M. L. J. Phys. Chem. B, 2006, 110: 6609.

[33]

Jacob D. S., Bitton L., Grinblat J., Felner I., Koltypin Y., Gedanken A. Chem. Mater., 2006, 18: 3162.

[34]

Huddleston J. G., Willauer H. D., Swatloski R. P., Visser A. E., Rogers R. D. Chem. Commun., 1998, 16: 1765.

[35]

Shanmugam S., Gedanken A. J. Phys. Chem. B., 2006, 110: 2037.

[36]

Fredlake C. P., Crosthwaite J. M., Hert D. G. J. Chem. Eng. Data, 2004, 49: 954.

[37]

Fuller J., Carkin R. T., Osteryoung R. A. J. Electrochem. Soc., 1997, 144: 3881.

[38]

Ficke L. E., Novak R. R., Brennecke J. F. J. Chem. Eng. Data, 2010, 55: 4946.

[39]

Wang Y., Li H. R., Han S. J. J. Phys. Chem. B, 2006, 110: 24646.

[40]

Huang J. F., Chen P. Y., Sun I. W., Wang S. P. Inorg. Chim. Acta, 2001, 320: 7.

[41]

Sun B. J., Jin Q., Tan L. S., Wu P. Y., Yan F. J. Phys. Chem. B, 2008, 112: 14251.

[42]

Gillespie R. J., Hartman J. S. Can. J. Chem., 1967, 45: 859.

AI Summary AI Mindmap
PDF

124

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/