Thermal transfer during the activation process in LiSi/FeS2 thermal batteries

Bo Kang , Wenli Zhang , Haibo Lin , Yonghui Xing , Jinfeng Zhao , Yan Wang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 665 -668.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (4) : 665 -668. DOI: 10.1007/s40242-016-6030-9
Article

Thermal transfer during the activation process in LiSi/FeS2 thermal batteries

Author information +
History +
PDF

Abstract

Thermal batteries(TBs) as primary power sources are widely applied in defense and military affairs, and used in electronic packages and nuclear weapons. The activation time(AT) of TBs restricts the reactive speed of them. Therefore, it is a remarkably important parameter and needs to be studied in detail. In our previous study, the thermal transfer model has already been found during the activation process in TBs. In this work, the experimental TBs were fabricated and tested for validating the model. The error between the average value of test and calculation value from this model is less than 1%. As a result, the thermal transfer function for the activation process in the given TBs[FeS2/LiCl-KCl(MgO)/LiSi containing Fe/KClO4 heat pellet] is suggested.

Keywords

Thermal battery / Activation time / Thermal transfer model / Thermal transfer function

Cite this article

Download citation ▾
Bo Kang, Wenli Zhang, Haibo Lin, Yonghui Xing, Jinfeng Zhao, Yan Wang. Thermal transfer during the activation process in LiSi/FeS2 thermal batteries. Chemical Research in Chinese Universities, 2016, 32(4): 665-668 DOI:10.1007/s40242-016-6030-9

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Guidotti R. A., Masset P. J. Power Sources, 2006, 161: 1443.

[2]

Masset P. J., Guidotti R. A. J. Power Sources, 2008, 177: 595.

[3]

Masset P. J., Guidotti R. A. J. Power Sources, 2008, 178: 456.

[4]

Guidotti R. A., Reinhardt F. W. Deformation Study of Separator Pellets for Thermal Batteries, 1995, 1.

[5]

Eivind L. Development and Validation of Transient Temperature Model for Thermal Batteries, 2006, 389.

[6]

Nicholas D. S., David I., Dean D. A Thermal Model for Thermal Batteries, 2008, 421.

[7]

Joe E., Julie B. Thermal Battery Igniter Activation Measurement and Flow Modeling, 2010, 599.

[8]

Zhao J. F., Chu D. W., Yang X. Y., Zhang W. H., Kang B. Chinese Journal of Power Sources, 2008, 32(9): 614.

[9]

Du F., Bie X. F., Bian X. F., Hu F., Chen G., Wang C. Z., Wei Y. J. Chem. Res. Chinese Universities, 2013, 29(2): 210.

[10]

Liu M., Hu L., Xu P. F., Zhao K., Zong L. B., Yu R. B., Chen J., Xing X. R. Chem. Res. Chinese Universities, 2015, 31(3): 342.

[11]

Popescu A., Constantin V. Chem. Res. Chinese Universities, 2015, 31(5): 858.

[12]

Jiang T., Wang N., Peng S. M., Yan L. M. Chem. Res. Chinese Universities, 2015, 31(2): 281.

[13]

Dong C. L. The Development and Application of Automatic Test System for Thermal Battery, 2008, Tianjin: Nankai University, 32.

[14]

Kubicar L., Bohač V., Vretanár V., Barta, Neuer G., Brandt R. Int. J. Thermophys., 2005, 26(6): 1949.

[15]

Masset P. J., Guidotti R. A. J. Power Sources, 2007, 164: 397.

[16]

Guidotti R. A., Odinek J., Reinhardt F. W. Journal of Energetic Materials, 2006, 24(4): 271.

[17]

Kingery A. W., Bowen H. K., Uhlmann D. R. Introduction to Ceramics, 1976 2 New York: John Wiley and Sons, Inc., 177.

[18]

Cairns E. J., Steunenberg R. K., Rouse C. A. Progress in High Temperature Physics and Chemistry, 1973, New York: Plenum Press, 63.

[19]

Stull D. R., Prophet H. JANAF Thermochemical Tables, National Standard Reference Data System, 1971, 1.

[20]

Damle A. S., Argade S. D. Modeling of Thermal Battery Activation, 1996, 271.

[21]

Serge S. J. Power Sources, 2005, 142: 361.

[22]

Lee J. Battery Thermal Modeling: The Methodology and Applications, 1987, 1.

[23]

Giancarlo C. S. F., Fernando C. P., Ardson S. V. Jr. J. Power Sources, 2008, 179: 424.

AI Summary AI Mindmap
PDF

137

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/