Spectrometric study on the interaction of indocyanine green with human serum albumin

Xiaodong Li , Yu Fu , Lina Ma , Zhenxin Wang , Huimao Zhang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 343 -347.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 343 -347. DOI: 10.1007/s40242-016-6008-7
Article

Spectrometric study on the interaction of indocyanine green with human serum albumin

Author information +
History +
PDF

Abstract

The interaction of indocyanine green(ICG) with human serum albumin(HSA) was investigated via various spectrometric(UV-visible, fluorescence and circular dichroism) techniques. The experimental results indicate that the interaction of ICG with HSA depends on the values of R(R is defined as the molar ratio of HSA to ICG). The interaction of ICG with HSA can form two complexes with intrinsic binding constants(K a) of 2.97×105(R≤2) and 2.63×104(R>2), respectively. The fluorescence and induced CD(ICD) spectra of ICG demonstrate that binding the first mole of HSA to ICG can form a chiral ICG-HSA complex with strong fluorescence emission, and the chirality and fluorescence of ICG-HSA complex can be significantly reduced by adding another mole of HSA to ICG. Furthermore, although both ICG and ICG-HSA complexes followed an energy-dependent endocytosis process to enter living cells, the cellular uptaken dynamic mechanism of ICG was significantly affected by the HSA conjugation.

Keywords

Indocyanine green(ICG) / Human serum albumin(HSA) / Spectrometric study / Cellular uptaken

Cite this article

Download citation ▾
Xiaodong Li, Yu Fu, Lina Ma, Zhenxin Wang, Huimao Zhang. Spectrometric study on the interaction of indocyanine green with human serum albumin. Chemical Research in Chinese Universities, 2016, 32(3): 343-347 DOI:10.1007/s40242-016-6008-7

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Cherrick G. R., Stein S. W., Levy C. M., Davidson C. S. J. Clin. Invest., 1960, 39(4): 592.

[2]

Berezin M. Y., Lee H., Akers W., Achilefu S. Biophys. J., 2007, 93(8): 2892.

[3]

Alford R., Simpson H. M., Duberman J., Hill G. C., Ogawa M., Regino C., Kobayashi H., Choyke P. L. Mol. Imaging, 2009, 8(6): 341.

[4]

Yaseen M. A., Yu J., Jung B., Wong M. S., Anvari B. Mol. Pharmaceutics, 2009, 6(5): 1321.

[5]

Jung B., Anvari B. Biotechnol. Prog., 2012, 28(2): 533.

[6]

Sauda K., Imasaka T., Ishibashi N. Anal. Chem., 1986, 58(13): 2649.

[7]

Simpson C. R., Kohl M., Essenpreis M., Cope M. Phys. Med. Biol., 1998, 43(9): 2465.

[8]

Malicka J., Gryczynski I., Geddes C. D., Lakowicz J. R. J. Biomed. Opt., 2003, 8(3): 472.

[9]

Kisu I., Banno K., Mihara M., Lin L. Y., Tsuji K., Yanokura M., Hara H., Araki J., Iida T., Abe T., Kouyama K., Suganuma N., Aoki D. PLoS One, 2012, 7(4): e35124.

[10]

Fineman M. S., Maguire J. I., Fineman S. W., Benson W. E. Arch. Ophthalmol., 2001, 119(3): 353.

[11]

Berridge D. L. Am. J. Roentgenol., 1995, 164(5): 1299.

[12]

Yoneya S., Saito T., Komatsu Y., Koyama K., Takahashi J., Duvoll-Young J. Invest. Ophthalmol. Vis. Sci., 1998, 39(7): 1286.

[13]

de la Zerda A., Liu Z., Bodapati S., Teed R., Vaithilingam S., Khuri-Yakub B. T., Chen X., Dai H., Gambhir S. S. Nano Lett., 2010, 10(6): 2168.

[14]

de la Zerda A., Bodapati S., Teed R., May S. Y., Tabakman S. M., Liu Z., Khuri-Yakub B. T., Chen X., Dai H., Gambhir S. S. ACS Nano, 2012, 6(6): 4694.

[15]

Soper S. A., Mattingly Q. L. J. Am. Chem. Soc., 1994, 116(9): 3744.

[16]

Flanagan J. H., Khan S. H., Menchen S., Soper S. A., Hammer R. P. Bioconjug. Chem., 1997, 8(5): 751.

[17]

McCorquodale E. M., Colyer C. L. Electrophoresis, 2001, 22(12): 2403.

[18]

Nairat M., Konar A., Kaniecki M., Lozovoya V. V., Dantus M. Phys.Chem.Chem.Phys., 2015, 17(8): 5872.

[19]

Rotermund F., Weigand R., Holzer W., Wittmann M., Penzkofer A. J. Photochem. Photobiol. A, 1997, 110(1): 75.

[20]

Soper S. A., Mattingly Q. L., Legendre B. L. Proceedings of the Society of Photo-optical Instrumentation Engineers, 1994, 2138: 216.

[21]

Soper S. A., Mattingly Q. L. J. Am. Chem. Soc., 1994, 116(9): 3744.

[22]

Imasaka T., Nakagawa H., Okazaki T., Ishibashi N. Anal. Chem., 1990, 62(21): 2404.

[23]

Rajagopalan R., Uetrecht P., Bugaj J. E., Achilefu S. A., Dorshow R. B. Photochem. Photobiol., 2000, 71(3): 347.

[24]

Kosaka N., Mitsunaga M., Longmire M. R., Choyke P. L., Kobayashi H. Int. J. Cancer, 2011, 129(7): 1671.

[25]

Naik P. N., Chimatadar S. A., Nandibewoor S. T. J. Photochem. Photobiol. B, 2010, 100(3): 147.

[26]

Zhang W., Zhao Y., Bai X. Y., Hui G., Zhao D. Q., Zhao B. Chem. J. Chinese Universities, 2010, 31(9): 1834.

[27]

Berezin M. Y., Guo K., Akers W., Livingston J., Solomon M., Lee H., Liang K., Agee A., Achilefu S. Biochemistry, 2011, 50(13): 2691.

[28]

McGhee J. D., von Hippel P. H. J. Mol. Biol., 1974, 86(2): 469.

[29]

Letoha T., Gaa’l S., Somlai C., Czajlik A., Perczel A., Penke B. J. Mol. Recognit., 2003, 16(5): 272.

[30]

Sun L. L., Wang J. E., Wang Z. X. Nanoscale, 2010, 2: 269.

AI Summary AI Mindmap
PDF

149

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/