Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair

Zhenzhen Li , Jianhua Wen , Weijian Jia , Shan Ding , Xiaohui Xia , Changren Zhou , Yadong Huang

Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 406 -413.

PDF
Chemical Research in Chinese Universities ›› 2016, Vol. 32 ›› Issue (3) : 406 -413. DOI: 10.1007/s40242-016-5510-2
Article

Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair

Author information +
History +
PDF

Abstract

We prepared a cholesterol-conjugated chitosan(CHCS) material and evaluated its potential application as a bone tissue repair material by in vitro cell experiments. Cell proliferation, differentiation and morphology on CHCS membrane surfaces with different graft degrees were assessed in mouse pre-osteoblasts MC3T3-E1 cells. The results indicate that CHCS materials could promote the proliferation of MC3T3-E1 cells at low graft degrees, but the CHCS material with high graft degree inhibits the proliferation of cells in contrast to the pure chitosan membrane. However, the alkaline phosphatase(ALP) activity of MC3T3-E1 cells on different CHCS membrane surface increased with increasing graft degrees of cholesterol. The area of cells stretched onto the surface of CHCS materials was larger than on the surface of CS materials, and more microfilaments and stress fibers in cells were observed on CHCS materials than on the pure chitosan material surface. After 7 d, the expression of related osteogenic marker genes, such as runt-related transcription factor 2(Runx2), osterix(OSX), osteocalcin(OCN), osteopontin(OPN), ALP and collagen I(COL-I) were all up-regulated in CHCS materials to different degrees compared to pure chitosan material, which indicated that the CHCS materials facilitated MC3T3-E1 cell differentiation and maturation. Characterizing CHCS materials is useful in designing and developing strategies for bone tissue engineering.

Keywords

Bone repair material / Chitosan / Cholesterol / MC3T3-E1 / Cell differentiation

Cite this article

Download citation ▾
Zhenzhen Li, Jianhua Wen, Weijian Jia, Shan Ding, Xiaohui Xia, Changren Zhou, Yadong Huang. Bio-inspired cell membrane ingredient cholesterol-conjugated chitosan as a potential material for bone tissue repair. Chemical Research in Chinese Universities, 2016, 32(3): 406-413 DOI:10.1007/s40242-016-5510-2

登录浏览全文

4963

注册一个新账户 忘记密码

References

[1]

Murugan R., Ramakrishna S. Biomaterials, 2004, 25(17): 3829.

[2]

Lewandrowski K. U., Gresser J. D., Wise D. L., Trantolo D. J. Biomaterials, 2000, 21(8): 757.

[3]

Marc A. F. Y., Abbah S. A., Laoise M., Zeugolis D. I., Abhay P., Manus J. B. Adv. Drug Delivery Rev., 2014, 84: 1.

[4]

Wang X. H., Ma J. B., Wang Y. N., He B. L. Biomaterials, 2002, 23(21): 4167.

[5]

Martino A., Sittinger M., Risbud M. V. Biomaterials, 2005, 26(30): 5983.

[6]

Jiang L. Y., Li Y. B., Zhang L., Liao J. G. J. Mat. Sci.: Mat. in Med., 2008, 19(3): 981.

[7]

Lee J. Y., Nam S. H., Im S. Y., Park Y. J., Lee Y. M., Seol Y. J., Chung C. P., Lee S. J. J. Controlled Release, 2002, 78(1): 187.

[8]

Bagre A. P., Jain K., Jain N. K. Int. J. Pharm., 2013, 456(1): 31.

[9]

Agnihotri S. A., Mallikarjuna N. N., Aminabhavi T. M. J. Controlled Release, 2004, 100(1): 5.

[10]

Liu G., Luo Q., Gao H., Chen Y., Wei X., Dai H., Zhang Z., Ji J. Biomaterials Science, 2015, 3(3): 490.

[11]

Kim K., Dong Y. L., Lee H., Ji H. R. Biomaterials Science, 2013, 1(7): 783.

[12]

Anitha A., Sowmya S., Kumar P. T. S., Deepthi S., Chennazhi K. P. Prog. Polym. Sci., 2014, 39(9): 1644.

[13]

Jayakumar R., Prabaharan M., Kumar P. T. S., Nair S. V., Tamura H. Biotechnol. Adv., 2011, 29(3): 322.

[14]

Mi F. L., Shyu S. S., Wu Y. B., Lee S. T., Shyong J. Y. Biomaterials, 2001, 22(2): 165.

[15]

Gu Z., Xie H. X., Huang C., Li L., Yu X. Int. J. Biol. Macromol., 2013, 58: 121.

[16]

Li X., Wang X., Zhao T., Gao B., Miao Y. J. Oral and Maxillofacial Surgery, 2014, 72(2): 304.

[17]

Jayasuriya A. C., Kibbe S. J. Mater. Sci. Mater. Med., 2010, 21(2): 393.

[18]

Ding S., Tang M. J., Zhou C. R., Tian J. H., Li L. H. J. Functional Mater., 2012, 2: 12.

[19]

Ding S., Tang M. J., Zhou C. R., Tian J. H., Li L. H. Chem. J. Chinese Universities, 2012, 33(5): 1110.

[20]

Szczes A. Colloids and Surf.: Biointerfaces, 2013, 101: 44.

[21]

Laird D. F., Mucalo M. R., Yokogawa Y. J. Colloid Interface Sci., 2006, 295(2): 348.

[22]

Monika D. P., Ellis G., Linda O., Gerald H., Christine P. Biochemistry, 2006, 45(10): 3325.

[23]

Kubinová Š., Horák D., Syková E. Biomaterials, 2009, 30(27): 4601.

[24]

Li J., Yun H., Gong Y., Zhao N., Zhang X. Biomed. Mater. Res. A, 2005, 75(4): 985.

[25]

Yu G., Ji J., Shen J. J. Bioact. Compat. Polym., 2005, 20(6): 527.

[26]

Wang Y. S., Liu L. R., Jiang Q., Zhang Q. Q., Wang Y. S. Eur. Polym. J., 2007, 43(1): 43.

[27]

Yu J. M., Li Y. J., Qiu L. Y., Jin Y. Eur. P. J., 2008, 44(3): 555.

[28]

Cong Y. H., Wang W., Tian M., Meng F. B., Zhang B. Y. Liq. Cryst., 2009, 36(5): 455.

[29]

Yang J. Y., Ting Y. C., Lai J. Y., Liu H. L., Fang H. W. J. Biomed. Mater. Res. A, 2009, 90(3): 629.

[30]

Guo Z., Xu J., Ding S., Li H., Zhou C. J. Biomaterials Science, Polymer Edition, 2015, 26(15): 989.

[31]

Yu G., Ji J., Shen J. Acta Polym. Sinica, 2006, 1: 136.

[32]

Zhang Y., Zeng R., Zhou C. R. Polym. Mater. Sci. Eng., 2009, 11: 20.

[33]

Piret G., Elisabeth G., Coffinier Y., Rabah B., Legrand D. Soft Matter, 2011, 7(18): 8642.

[34]

Anselme K., Davidson P., Popa A. M., Giazzon M., Liley M. Acta biomaterialia, 2010, 6(10): 3824.

[35]

Galkin V. E., Orlova A. EgelmanE. H., Curr. Biolo., 2012, 22(3): 96.

[36]

Lowery J., Kuczmarski E. R., Herrmann H., Goldman R. D. J. Biolo. Chem., 2015, 290(28): 115.

[37]

Chang T. H., Huang H. D., Ong W. K., Fu Y. J., Lee O. K. Biomaterials, 2014, 35(13): 3934.

[38]

Reinhard W., Michael B., Magin T. M., Leube R. E. Journal of Cell Biology, 2011, 194(5): 669.

[39]

Yamaki K., Harada I., Goto M., Cho C. S., Akaike T. Biomaterials, 2009, 30(7): 1421.

[40]

Riehl B. D., Park J. H., Kwon I. K., Lim J. Y. Tissue Eng. Part B: Rev., 2012, 18(4): 288.

[41]

Boudreault F., Tschumperlin D. J. Am. J. Respir. Cell Mol. Biol., 2010, 43(1): 64.

[42]

Dalby M. J., Riehle M. O., Johnstone H., Affrossman S., Curtis A. S. G. Biomaterials, 2002, 23(14): 2945.

[43]

Price R. L., Waid M. C., Haberstroh K. M., Webster T. J. Biomaterials, 2003, 24(11): 1877.

[44]

Weinreb M., Shinar D., Rodan G. A. J. Bone and Mineral Research, 1990, 5(8): 831.

[45]

Aubin J. E., Liu F., Malaval L., Gupta A. K. Bone, 1995, 17(2): S77.

[46]

Zhang Y., Xie R. L., Croce C. M., Stein J. L., Lian J. B. Proc. of the National Aca. Sci., 2011, 108(24): 9863.

[47]

Mark S., Fran O. V., Simpson K. J., John S., Smyth G. K. Nature, 2006, 439(7072): 84.

[48]

Bonnelye E., Chabadel A., Saltel F., Jurdic P. Bone, 2008, 42(1): 129.

[49]

Ferreira A. M., Gentile P., Chiono V., Ciardelli G. Acta Biomaterialia, 2012, 8(9): 3191.

[50]

Lin L., Chow K. L., Leng Y. J. Biomedi. Mater. Res. Part A, 2009, 89(2): 326.

[51]

Wang K. X., Denhardt D. T. Cytokine & Growth Factor Rev., 2008, 19(5): 333.

[52]

Liu Y. Y., Huang Y., Lu Z. R., Boamah P. O., Zhang Q., Wu J. B., Hua M. Q. Chem. J. Chinese Universites, 2015, 36(3): 589.

[53]

Tohmonda T., Miyauchi Y., Ghosh R., Yoda M., Uchikawa S., Takito J., Morioka H., Nakamura M., Iwawaki T., Chiba K. EMBO Reports, 2011, 12: 451.

[54]

Niu L. L., Huang D., Du J. J., Wei Y., Hu C. F., Ye J. Y., Chen W. Y. Chem. J. Chinese Universites, 2015, 36(10): 1873.

[55]

Li H., Guo H., Li H. Steroids, 2013, 78: 426.

AI Summary AI Mindmap
PDF

128

Accesses

0

Citation

Detail

Sections
Recommended

AI思维导图

/